Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36607321

RESUMEN

Increasing trends in biomass burning emissions significantly impact air quality in North America. Enhanced mixing ratios of ozone (O3) in urban areas during smoke-impacted periods occur through transport of O3 produced within the smoke or through mixing of pyrogenic volatile organic compounds (PVOCs) with urban nitrogen oxides (NOx = NO + NO2) to enhance local O3 production. Here, we analyze a set of detailed chemical measurements, including carbon monoxide (CO), NOx, and speciated volatile organic compounds (VOCs), to evaluate the effects of smoke transported from relatively local and long-range fires on O3 measured at a site in Boulder, Colorado, during summer 2020. Relative to the smoke-free period, CO, background O3, OH reactivity, and total VOCs increased during both the local and long-range smoke periods, but NOx mixing ratios remained approximately constant. These observations are consistent with transport of PVOCs (comprised primarily of oxygenates) but not NOx with the smoke and with the influence of O3 produced within the smoke upwind of the urban area. Box-model calculations show that local O3 production during all three periods was in the NOx-sensitive regime. Consequently, this locally produced O3 was similar in all three periods and was relatively insensitive to the increase in PVOCs. However, calculated NOx sensitivities show that PVOCs substantially increase O3 production in the transition and NOx-saturated (VOC-sensitive) regimes. These results suggest that (1) O3 produced during smoke transport is the main driver for O3 increases in NOx-sensitive urban areas and (2) smoke may cause an additional increase in local O3 production in NOx-saturated (VOC-sensitive) urban areas. Additional detailed VOC and NOx measurements in smoke impacted urban areas are necessary to broadly quantify the effects of wildfire smoke on urban O3 and develop effective mitigation strategies.

2.
Sci Adv ; 7(50): eabl3648, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34878847

RESUMEN

Wildfires are a substantial but poorly quantified source of tropospheric ozone (O3). Here, to investigate the highly variable O3 chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O3 production can be predicted as a function of experimentally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O3 chemistry exhibits rapid transition in chemical regimes. Within a few daylight hours, the O3 formation substantially slows and is largely limited by the abundance of nitrogen oxides (NOx). This finding supports previous observations that O3 formation is enhanced when VOC-rich wildfire smoke mixes into NOx-rich urban plumes, thereby deteriorating urban air quality. Last, we relate O3 chemistry to the underlying fire characteristics, enabling a more accurate representation of wildfire chemistry in atmospheric models that are used to study air quality and predict climate.

3.
Environ Sci Technol ; 55(23): 15646-15657, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34817984

RESUMEN

We present a novel method, the Gaussian observational model for edge to center heterogeneity (GOMECH), to quantify the horizontal chemical structure of plumes. GOMECH fits observations of short-lived emissions or products against a long-lived tracer (e.g., CO) to provide relative metrics for the plume width (wi/wCO) and center (bi/wCO). To validate GOMECH, we investigate OH and NO3 oxidation processes in smoke plumes sampled during FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality, a 2019 wildfire smoke study). An analysis of 430 crosswind transects demonstrates that nitrous acid (HONO), a primary source of OH, is narrower than CO (wHONO/wCO = 0.73-0.84 ± 0.01) and maleic anhydride (an OH oxidation product) is enhanced on plume edges (wmaleicanhydride/wCO = 1.06-1.12 ± 0.01). By contrast, NO3 production [P(NO3)] occurs mainly at the plume center (wP(NO3)/wCO = 0.91-1.00 ± 0.01). Phenolic emissions, highly reactive to OH and NO3, are narrower than CO (wphenol/wCO = 0.96 ± 0.03, wcatechol/wCO = 0.91 ± 0.01, and wmethylcatechol/wCO = 0.84 ± 0.01), suggesting that plume edge phenolic losses are the greatest. Yet, nitrophenolic aerosol, their oxidation product, is the greatest at the plume center (wnitrophenolicaerosol/wCO = 0.95 ± 0.02). In a large plume case study, GOMECH suggests that nitrocatechol aerosol is most associated with P(NO3). Last, we corroborate GOMECH with a large eddy simulation model which suggests most (55%) of nitrocatechol is produced through NO3 in our case study.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Biomasa , Humo/análisis
4.
ACS Earth Space Chem ; 2(8): 764-777, 2018 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-33615099

RESUMEN

Terrestrial ecosystems are simultaneously the largest source and a major sink of volatile organic compounds (VOCs) to the global atmosphere, and these two-way fluxes are an important source of uncertainty in current models. Here, we apply high-resolution mass spectrometry (proton transfer reaction-quadrupole interface time-of-flight; PTR-QiTOF) to measure ecosystem-atmosphere VOC fluxes across the entire detected mass range (m/z 0-335) over a mixed temperate forest and use the results to test how well a state-of-science chemical transport model (GEOS-Chem CTM) is able to represent the observed reactive carbon exchange. We show that ambient humidity fluctuations can give rise to spurious VOC fluxes with PTR-based techniques and present a method to screen for such effects. After doing so, 377 of the 636 detected ions exhibited detectable gross fluxes during the study, implying a large number of species with active ecosystem-atmosphere exchange. We introduce the reactivity flux as a measure of how Earth-atmosphere fluxes influence ambient OH reactivity and show that the upward total VOC (∑VOC) carbon and reactivity fluxes are carried by a far smaller number of species than the downward fluxes. The model underpredicts the ∑VOC carbon and reactivity fluxes by 40-60% on average. However, the observed net fluxes are dominated (90% on a carbon basis, 95% on a reactivity basis) by known VOCs explicitly included in the CTM. As a result, the largest CTM uncertainties in simulating VOC carbon and reactivity exchange for this environment are associated with known rather than unrepresented species. This conclusion pertains to the set of species detectable by PTR-TOF techniques, which likely represents the majority in terms of carbon mass and OH reactivity, but not necessarily in terms of aerosol formation potential. In the case of oxygenated VOCs, the model severely underpredicts the gross fluxes and the net exchange. Here, unrepresented VOCs play a larger role, accounting for ~30% of the carbon flux and ~50% of the reactivity flux. The resulting CTM biases, however, are still smaller than those that arise from uncertainties for known and represented compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA