Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 342: 123087, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061431

RESUMEN

Traffic-related air pollution (TRAP) exposure is associated with systemic health effects, which can be studied using blood-based markers. Although we have previously shown that high TRAP concentrations alter the plasma proteome, the concentration-response relationship between blood proteins and TRAP is unexplored in controlled human exposure studies. We aimed to identify concentration-dependent plasma markers of diesel exhaust (DE), a model of TRAP. Fifteen healthy non-smokers were enrolled into a double-blinded, crossover study where they were exposed to filtered air (FA) and DE at 20, 50 and 150 µg/m3 PM2.5 for 4h, separated by ≥ 4-week washouts. We collected blood at 24h post-exposure and used label-free mass spectrometry to quantify proteins in plasma. Proteins exhibiting a concentration-response, as determined by linear mixed effects models (LMEMs), were assessed for pathway enrichment using WebGestalt. Top candidates, identified by sparse partial least squares discriminant analysis and LMEMs, were confirmed using enzyme-linked immunoassays. Thereafter, we assessed correlations between proteins that showed a DE concentration-response and acute inflammatory endpoints, forced expiratory volume in 1 s (FEV1) and methacholine provocation concentration causing a 20% drop in FEV1 (PC20). DE exposure was associated with concentration-dependent alterations in 45 proteins, which were enriched in complement pathways. Of the 9 proteins selected for confirmatory immunoassays, based on complementary bioinformatic approaches to narrow targets and availability of high-quality assays, complement factor I (CFI) exhibited a significant concentration-dependent decrease (-0.02 µg/mL per µg/m3 of PM2.5, p = 0.04). Comparing to FA at discrete concentrations, CFI trended downward at 50 (-2.14 ± 1.18, p = 0.08) and significantly decreased at 150 µg/m3 PM2.5 (-2.93 ± 1.18, p = 0.02). CFI levels were correlated with FEV1, PC20 and nasal interleukin (IL)-6 and IL-1ß. This study details concentration-dependent alterations in the plasma proteome following DE exposure at concentrations relevant to occupational and community settings. CFI shows a robust concentration-response and association with established measures of airway function and inflammation.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Humanos , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Proteoma , Estudios Cruzados , Pruebas de Función Respiratoria , Interleucina-6 , Material Particulado/toxicidad , Material Particulado/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis
2.
Ann Am Thorac Soc ; 20(6): 834-842, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36930796

RESUMEN

Rationale: Air pollution exposure is harmful to human airways, and its impacts are best studied using concentration-response relationships. However, most concentration-response research on airway health has investigated chronic exposures, with less being known about acute effects, which can be robustly studied using controlled human exposures. Objectives: To investigate the concentration relationship between airway health measures and diesel exhaust (DE). Methods: We conducted a double-blind crossover study with 17 healthy nonsmokers exposed to filtered air and DE standardized to 20, 50, and 150 µg/m3 of particulate matter ⩽2.5 µm in aerodynamic diameter for 4 hours. Before, during, and up to 24 hours from the exposure start, we measured lung function, airway responsiveness, and airway inflammation using spirometry, methacholine challenge, and fractional exhaled nitric oxide (FeNO), respectively. In addition, we measured nasal airway inflammation using differential cell counts and cytokines in nasal lavage and epithelial lining fluid at 24 hours. We assessed DE concentration responses and associations between outcomes using linear mixed effects models and repeated measures correlations, respectively, thereafter adjusting for multiple comparisons. Results: DE exposure increased percentage ΔFeNO at 4 hours (ß = 0.16 ± 0.06). Compared with filtered air, percentage ΔFeNO trended toward an increase at concentrations of 20 µg/m3 (ß = 18.66 ± 8.76) and 50 µg/m3 (ß = 19.33 ± 8.92) and increased significantly at 150 µg/m3 (ß = 34.43 ± 8.92). In addition, DE exposure induced a trend toward increased nasal IL-6 at 24 hours (percentage difference, 0.88; 95% confidence interval, 0.08, 1.70). There were no effects of DE exposure on FeNO at 24 hours, lung function, airway responsiveness, or nasal cell counts. Conclusions: DE induces a concentration-dependent increase in FeNO, indicating that it may be a sensitive marker of an acute inflammatory response in the airways. We report responses at concentrations below those in previous controlled DE exposure studies, and we document particulate matter ⩽2.5 µm in aerodynamic diameter concentration-response estimates at exposure levels routinely experienced in the community and occupational settings. Clinical trial registered with www.clinicaltrials.gov (NCT03234790).


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Humanos , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/análisis , Estudios Cruzados , Material Particulado/efectos adversos , Material Particulado/análisis , Inflamación
3.
Environ Res ; 216(Pt 4): 114826, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403657

RESUMEN

The lung microbiome plays a crucial role in airway homeostasis, yet we know little about the effects of exposures such as air pollution therein. We conducted a controlled human exposure study to assess the impact of diesel exhaust (DE) on the human airway microbiome. Twenty-four participants (former smokers with mild to moderate COPD (N = 9), healthy former smokers (N = 7), and control healthy never smokers (N = 8)) were exposed to DE (300 µg/m3 PM2.5) and filtered air (FA) for 2 h in a randomized order, separated by a 4-week washout. Endobronchial brushing samples were collected 24 h post-exposure and sequenced for the 16S microbiome, which was analyzed using QIIME2 and PICRUSt2 to examine diversity and metabolic functions, respectively. DE exposure altered airway microbiome metabolic functions in spite of statistically stable microbiome diversity. Affected functions included increases in: superpathway of purine deoxyribonucleosides degradation (pathway differential abundance 743.9, CI 95% 201.2 to 1286.6), thiazole biosynthesis I (668.5, CI 95% 139.9 to 1197.06), and L-lysine biosynthesis II (666.5, CI 95% 73.3 to 1257.7). There was an exposure-by-age effect, such that menaquinone biosynthesis superpathways were the most enriched function in the microbiome of participants aged >60, irrespective of smoking or health status. Moreover, exposure-by-phenotype analysis showed metabolic alterations in former smokers after DE exposure. These observations suggest that DE exposure induced substantial changes in the metabolic functions of the airway microbiome despite the absence of diversity changes.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Microbiota , Humanos , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Fumadores , Contaminación del Aire/análisis , Metagenoma , Contaminantes Atmosféricos/análisis
4.
Part Fibre Toxicol ; 19(1): 66, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36419123

RESUMEN

BACKGROUND: Traffic-related air pollution (TRAP) exposure causes adverse effects on wellbeing and quality of life, which can be studied non-invasively using self-reported symptoms. However, little is known about the effects of different TRAP concentrations on symptoms following controlled exposures, where acute responses can be studied with limited confounding. We investigated the concentration-response relationship between diesel exhaust (DE) exposure, as a model TRAP, and self-reported symptoms. METHODS: We recruited 17 healthy non-smokers into a double-blind crossover study where they were exposed to filtered air (FA) and DE standardized to 20, 50, 150 µg/m3 PM2.5 for 4 h, with a ≥ 4-week washout between exposures. Immediately before, and at 4 h and 24 h from the beginning of the exposure, we administered visual analog scale (VAS) questionnaires and grouped responses into chest, constitutional, eye, neurological, and nasal categories. Additionally, we assessed how the symptom response was related to exposure perception and airway function. RESULTS: An increase in DE concentration raised total (ß ± standard error = 0.05 ± 0.03, P = 0.04), constitutional (0.01 ± 0.01, P = 0.03) and eye (0.02 ± 0.01, P = 0.05) symptoms at 4 h, modified by perception of temperature, noise, and anxiety. These symptoms were also correlated with airway inflammation. Compared to FA, symptoms were significantly increased at 150 µg/m3 for the total (8.45 ± 3.92, P = 0.04) and eye (3.18 ± 1.55, P = 0.05) categories, with trends towards higher values in the constitutional (1.49 ± 0.86, P = 0.09) and nasal (1.71 ± 0.96, P = 0.08) categories. CONCLUSION: DE exposure induced a concentration-dependent increase in symptoms, primarily in the eyes and body, that was modified by environmental perception. These observations emphasize the inflammatory and sensory effects of TRAP, with a potential threshold below 150 µg/m3 PM2.5. We demonstrate VAS questionnaires as a useful tool for health monitoring and provide insight into the TRAP concentration-response at exposure levels relevant to public health policy.


Asunto(s)
Calidad de Vida , Emisiones de Vehículos , Humanos , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Estudios Cruzados , Método Doble Ciego , Material Particulado/toxicidad
5.
Eur Respir J ; 51(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29371381

RESUMEN

Diesel exhaust (DE) is a paradigm for traffic-related air pollution. Human adaptation to DE is poorly understood and currently based on oversimplified models. DE promotes allergic responses, but protein expression changes mediated by this interaction have not been systematically investigated. The aim of this study was to define the effect of inhaled DE on allergen-induced proteins in the lung.We performed a randomised and blinded controlled human crossover exposure study. Participants inhaled filtered air or DE; thereafter, contralateral lung segments were challenged with allergen or saline. Using label-free quantitative proteomics, we comprehensively defined DE-mediated alteration of allergen-driven secreted proteins (secretome) in bronchoalveolar lavage. We further examined expression of proteins selected from the secretome data in independent validation experiments using Western blots, ELISA and immunohistochemistry.We identified protein changes unique to co-exposure (DE+allergen), undetected with mono-exposures (DE or allergen alone). Validation studies confirmed that specific proteins (e.g. the antimicrobial peptide cystatin-SA) were significantly enhanced with DE+allergen compared to either mono-exposure.This study demonstrates that common environmental co-exposures can uniquely alter protein responses in the lungs, illuminating biology that mono-exposures cannot. This study highlights the value of complex human in vivo models in detailing airway responses to inhaled pollution.


Asunto(s)
Alérgenos/análisis , Bronquios/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/efectos adversos , Bronquios/metabolismo , Lavado Broncoalveolar , Líquido del Lavado Bronquioalveolar , Cromatografía Liquida , Estudios Cruzados , Método Doble Ciego , Perfilación de la Expresión Génica , Humanos , Hipersensibilidad , Inflamación , Pulmón/metabolismo , Espectrometría de Masas , Distribución Normal , Estrés Oxidativo , Tamaño de la Partícula , Proteómica , Hipersensibilidad Respiratoria , Cistatinas Salivales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA