Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Rep ; 36(8): 109610, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433040

RESUMEN

Cxcl12-null embryos have dysplastic, misaligned, and hyperplastic semilunar valves (SLVs). In this study, we show that CXCL12 signaling via its receptor CXCR4 fulfills distinct roles at different stages of SLV development, acting initially as a guidance cue to pattern cellular distribution within the valve primordia during the endocardial-to-mesenchymal transition (endoMT) phase and later regulating mesenchymal cell proliferation during SLV remodeling. Transient, anteriorly localized puncta of internalized CXCR4 are observed in cells undergoing endoMT. In vitro, CXCR4+ cell orientation in response to CXCL12 requires phosphatidylinositol 3-kinase (PI3K) signaling and is inhibited by suppression of endocytosis. This dynamic intracellular localization of CXCR4 during SLV development is related to CXCL12 availability, potentially enabling activation of divergent downstream signaling pathways at key developmental stages. Importantly, Cxcr7-/- mutants display evidence of excessive CXCL12 signaling, indicating a likely role for atypical chemokine receptor CXCR7 in regulating ligand bioavailability and thus CXCR4 signaling output during SLV morphogenesis.


Asunto(s)
Quimiocina CXCL12/metabolismo , Morfogénesis/fisiología , Organogénesis/fisiología , Transducción de Señal/fisiología , Animales , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores CXCR/deficiencia , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal/genética
2.
PLoS One ; 13(11): e0207251, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30408103

RESUMEN

The CXCL12-CXCR4 pathway has crucial roles in stem cell homing and maintenance, neuronal guidance, cancer progression, inflammation, remote-conditioning, cell migration and development. Recently, work in chick suggested that signalling via CXCR4 in neural crest cells (NCCs) has a role in the 22q11.2 deletion syndrome (22q11.2DS), a disorder where haploinsufficiency of the transcription factor TBX1 is responsible for the major structural defects. We tested this idea in mouse models. Our analysis of genes with altered expression in Tbx1 mutant mouse models showed down-regulation of Cxcl12 in pharyngeal surface ectoderm and rostral mesoderm, both tissues with the potential to signal to migrating NCCs. Conditional mutagenesis of Tbx1 in the pharyngeal surface ectoderm is associated with hypo/aplasia of the 4th pharyngeal arch artery (PAA) and interruption of the aortic arch type B (IAA-B), the cardiovascular defect most typical of 22q11.2DS. We therefore analysed constitutive mouse mutants of the ligand (CXCL12) and receptor (CXCR4) components of the pathway, in addition to ectodermal conditionals of Cxcl12 and NCC conditionals of Cxcr4. However, none of these typical 22q11.2DS features were detected in constitutively or conditionally mutant embryos. Instead, duplicated carotid arteries were observed, a phenotype recapitulated in Tie-2Cre (endothelial) conditional knock outs of Cxcr4. Previous studies have demonstrated genetic interaction between signalling pathways and Tbx1 haploinsufficiency e.g. FGF, WNT, SMAD-dependent. We therefore tested for possible epistasis between Tbx1 and the CXCL12 signalling axis by examining Tbx1 and Cxcl12 double heterozygotes as well as Tbx1/Cxcl12/Cxcr4 triple heterozygotes, but failed to identify any exacerbation of the Tbx1 haploinsufficient arch artery phenotype. We conclude that CXCL12 signalling via NCC/CXCR4 has no major role in the genesis of the Tbx1 loss of function phenotype. Instead, the pathway has a distinct effect on remodelling of head vessels and interventricular septation mediated via CXCL12 signalling from the pharyngeal surface ectoderm and second heart field to endothelial cells.


Asunto(s)
Sistema Cardiovascular/crecimiento & desarrollo , Sistema Cardiovascular/metabolismo , Quimiocina CXCL12/deficiencia , Receptores CXCR4/deficiencia , Proteínas de Dominio T Box/deficiencia , Animales , Aorta Torácica/anomalías , Aorta Torácica/embriología , Aorta Torácica/metabolismo , Anomalías Cardiovasculares/embriología , Anomalías Cardiovasculares/genética , Anomalías Cardiovasculares/metabolismo , Sistema Cardiovascular/embriología , Quimiocina CXCL12/genética , Síndrome de DiGeorge/enzimología , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/metabolismo , Modelos Animales de Enfermedad , Epistasis Genética , Femenino , Haploinsuficiencia , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Cresta Neural/metabolismo , Embarazo , Receptores CXCR4/genética , Transducción de Señal/genética , Proteínas de Dominio T Box/genética
3.
PLoS Genet ; 13(10): e1007068, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29084269

RESUMEN

The coronary vasculature is an essential vessel network providing the blood supply to the heart. Disruptions in coronary blood flow contribute to cardiac disease, a major cause of premature death worldwide. The generation of treatments for cardiovascular disease will be aided by a deeper understanding of the developmental processes that underpin coronary vessel formation. From an ENU mutagenesis screen, we have isolated a mouse mutant displaying embryonic hydrocephalus and cardiac defects (EHC). Positional cloning and candidate gene analysis revealed that the EHC phenotype results from a point mutation in a splice donor site of the Myh10 gene, which encodes NMHC IIB. Complementation testing confirmed that the Myh10 mutation causes the EHC phenotype. Characterisation of the EHC cardiac defects revealed abnormalities in myocardial development, consistent with observations from previously generated NMHC IIB null mouse lines. Analysis of the EHC mutant hearts also identified defects in the formation of the coronary vasculature. We attribute the coronary vessel abnormalities to defective epicardial cell function, as the EHC epicardium displays an abnormal cell morphology, reduced capacity to undergo epithelial-mesenchymal transition (EMT), and impaired migration of epicardial-derived cells (EPDCs) into the myocardium. Our studies on the EHC mutant demonstrate a requirement for NMHC IIB in epicardial function and coronary vessel formation, highlighting the importance of this protein in cardiac development and ultimately, embryonic survival.


Asunto(s)
Vasos Coronarios/crecimiento & desarrollo , Desarrollo Embrionario/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo IIB no Muscular/genética , Pericardio/crecimiento & desarrollo , Animales , Diferenciación Celular/genética , Vasos Coronarios/metabolismo , Embrión de Mamíferos , Transición Epitelial-Mesenquimal/genética , Humanos , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patología , Ratones , Ratones Noqueados , Mutación , Miocardio/metabolismo , Pericardio/metabolismo
4.
Genesis ; 52(8): 713-37, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24866031

RESUMEN

Genes required for an organism to develop to maturity (for which no other gene can compensate) are considered essential. The continuing functional annotation of the mouse genome has enabled the identification of many essential genes required for specific developmental processes including cardiac development. Patterns are now emerging regarding the functional nature of genes required at specific points throughout gestation. Essential genes required for development beyond cardiac progenitor cell migration and induction include a small and functionally homogenous group encoding transcription factors, ligands and receptors. Actions of core cardiogenic transcription factors from the Gata, Nkx, Mef, Hand, and Tbx families trigger a marked expansion in the functional diversity of essential genes from midgestation onwards. As the embryo grows in size and complexity, genes required to maintain a functional heartbeat and to provide muscular strength and regulate blood flow are well represented. These essential genes regulate further specialization and polarization of cell types along with proliferative, migratory, adhesive, contractile, and structural processes. The identification of patterns regarding the functional nature of essential genes across numerous developmental systems may aid prediction of further essential genes and those important to development and/or progression of disease.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Genes Esenciales/genética , Corazón/crecimiento & desarrollo , Mamíferos/genética , Animales , Diferenciación Celular , Movimiento Celular , Corazón/embriología , Mamíferos/embriología , Mamíferos/crecimiento & desarrollo , Ratones , Células Madre
5.
J Immunol ; 190(5): 2049-57, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23365078

RESUMEN

Complement factor H (CFH) regulates complement activation in host tissues through its recognition of polyanions, which mediate CFH binding to host cell surfaces and extracellular matrix, promoting the deactivation of deposited C3b. These polyanions include heparan sulfate (HS), a glycosaminoglycan with a highly diverse range of structures, for which two regions of CFH (CCP6-8 and CCP19-20) have been implicated in HS binding. Mutations/polymorphisms within these glycosaminoglycan-binding sites have been associated with age-related macular degeneration (AMD) and atypical hemolytic uremic syndrome. In this study, we demonstrate that CFH has tissue-specific binding properties mediated through its two HS-binding regions. Our data show that the CCP6-8 region of CFH binds more strongly to heparin (a highly sulfated form of HS) than CCP19-20, and that their sulfate specificities are different. Furthermore, the HS binding site in CCP6-8, which is affected by the AMD-associated Y402H polymorphism, plays the principal role in host tissue recognition in the human eye, whereas the CCP19-20 region makes the major contribution to the binding of CFH in the human kidney. This helps provide a biochemical explanation for the genetic basis of tissue-specific diseases such as AMD and atypical hemolytic uremic syndrome, and leads to a better understanding of the pathogenic mechanisms for these diseases of complement dysregulation.


Asunto(s)
Factor H de Complemento/genética , Ojo/metabolismo , Síndrome Hemolítico-Urémico/genética , Heparitina Sulfato/metabolismo , Riñón/metabolismo , Degeneración Macular/genética , Adulto , Anciano , Anciano de 80 o más Años , Sustitución de Aminoácidos , Síndrome Hemolítico Urémico Atípico , Autopsia , Sitios de Unión , Activación de Complemento/genética , Factor H de Complemento/química , Factor H de Complemento/metabolismo , Escherichia coli/genética , Ojo/patología , Femenino , Síndrome Hemolítico-Urémico/metabolismo , Síndrome Hemolítico-Urémico/patología , Humanos , Riñón/patología , Degeneración Macular/metabolismo , Degeneración Macular/patología , Masculino , Persona de Mediana Edad , Mutación , Especificidad de Órganos , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Invest Ophthalmol Vis Sci ; 53(12): 7528-38, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23074202

RESUMEN

PURPOSE: To examine the presence and distribution of proteoglycan (PG) core proteins in the adult human retina, choroid, and sclera. METHODS: Postmortem human eye tissue was dissected into Bruch's membrane/choroid complex, isolated Bruch's membrane, or neurosensory retina. PGs were extracted and partially purified by anion exchange chromatography. Trypsinized peptides were analyzed by tandem mass spectrometry and PG core proteins identified by database search. The distribution of PGs was examined by immunofluorescence microscopy on human macular tissue sections. RESULTS: The basement membrane PGs perlecan, agrin, and collagen-XVIII were identified in the human retina, and were present in the internal limiting membrane, blood vessel walls, and Bruch's membrane. The hyalectans versican and aggrecan were also detected. Versican was identified in Bruch's membrane, while aggrecan was distributed throughout the retina, choroid, and sclera. The cartilage link protein HAPLN1 was abundant in the interphotoreceptor matrix and sclera, while HAPLN4 (brain link protein 2) was found throughout the retina and choroid. The small leucine-rich repeat PG (SLRP) family members biglycan, decorin, fibromodulin, lumican, mimecan, opticin, and prolargin were present, with different patterns of distribution in the retina, choroid, and sclera. CONCLUSIONS: A combination of proteomics and immunohistochemistry approaches has provided for the first time a comprehensive analysis of the presence and distribution of PG core proteins throughout the human retina, choroid, and sclera. This complements our knowledge of glycosaminoglycan chain distribution in the human eye, and has important implications for understanding the structure and functional regulation of the eye in health and disease.


Asunto(s)
Coroides/química , Proteoglicanos/análisis , Retina/química , Esclerótica/química , Anciano , Anciano de 80 o más Años , Cadáver , Cromatografía por Intercambio Iónico , Humanos , Espectrometría de Masas , Microscopía Fluorescente , Persona de Mediana Edad , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA