Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 54(11): 1675-1689, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36333502

RESUMEN

The value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom's 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity. We demonstrate the relationship of these features with clinical outcome and show that integration of 186 distinct recurrent genomic alterations defines five genomic subgroups that associate with response to therapy, refining conventional outcome prediction. While requiring independent validation, our findings highlight the potential of whole-genome sequencing to inform future risk stratification in chronic lymphocytic leukemia.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Secuenciación Completa del Genoma , Mutación , Genómica , Pronóstico
2.
Genetics ; 212(3): 815-835, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31113811

RESUMEN

Suppressed recombination allows divergence between homologous sex chromosomes and the functionality of their genes. Here, we reveal patterns of the earliest stages of sex-chromosome evolution in the diploid dioecious herb Mercurialis annua on the basis of cytological analysis, de novo genome assembly and annotation, genetic mapping, exome resequencing of natural populations, and transcriptome analysis. The genome assembly contained 34,105 expressed genes, of which 10,076 were assigned to linkage groups. Genetic mapping and exome resequencing of individuals across the species range both identified the largest linkage group, LG1, as the sex chromosome. Although the sex chromosomes of M. annua are karyotypically homomorphic, we estimate that about one-third of the Y chromosome, containing 568 transcripts and spanning 22.3 cM in the corresponding female map, has ceased recombining. Nevertheless, we found limited evidence for Y-chromosome degeneration in terms of gene loss and pseudogenization, and most X- and Y-linked genes appear to have diverged in the period subsequent to speciation between M. annua and its sister species M. huetii, which shares the same sex-determining region. Taken together, our results suggest that the M. annua Y chromosome has at least two evolutionary strata: a small old stratum shared with M. huetii, and a more recent larger stratum that is probably unique to M. annua and that stopped recombining ∼1 MYA. Patterns of gene expression within the nonrecombining region are consistent with the idea that sexually antagonistic selection may have played a role in favoring suppressed recombination.


Asunto(s)
Cromosomas de las Plantas/genética , Euphorbiaceae/genética , Evolución Molecular , Diploidia , Genes de Plantas , Ligamiento Genético , Transcriptoma
3.
Genome Biol Evol ; 2: 166-79, 2010 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-20624723

RESUMEN

Different protein secondary structure elements have different physicochemical properties and roles in the protein, which may determine their evolutionary flexibility. However, it is not clear to what extent protein structure affects the way Darwinian selection acts at the amino acid level. Using phylogeny-based likelihood tests for positive selection, we have examined the relationship between protein secondary structure and selection across six species of Drosophila. We find that amino acids that form disordered regions, such as random coils, are far more likely to be under positive selection than expected from their proportion in the proteins, and residues in helices and beta-structures are subject to less positive selection than predicted. In addition, it appears that sites undergoing positive selection are more likely than expected to occur close to one another in the protein sequence. Finally, on a genome-wide scale, we have determined that positively selected sites are found more frequently toward the gene ends. Our results demonstrate that protein structures with a greater degree of organization and strong hydrophobicity, represented here as helices and beta-structures, are less tolerant to molecular adaptation than disordered, hydrophilic regions, across a diverse set of proteins.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila/química , Drosophila/genética , Selección Genética , Animales , Drosophila/clasificación , Drosophila melanogaster/química , Drosophila melanogaster/genética , Evolución Molecular , Genoma de los Insectos , Interacciones Hidrofóbicas e Hidrofílicas , Mutación INDEL , Modelos Genéticos , Filogenia , Estructura Secundaria de Proteína , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA