Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Exp Brain Res ; 242(2): 355-365, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092900

RESUMEN

Surgical reconstruction of the anterior cruciate ligament (ACL) and subsequent physical therapy can help athletes return to competition; however, re-injury rates remain disproportionately high due, in part, to lingering biomechanical and neurological factors that are not fully addressed during rehabilitation. Prior reports indicate that individuals exhibit altered electrical activity in both brain and muscle after ACL reconstruction (ACLR). In this investigation, we aimed to extend existing approaches by introducing a novel non-linear analysis of corticomuscular dynamics, which does not assume oscillatory coupling between brain and muscle: Corticomuscular cross-recurrence analysis (CM-cRQA). Our findings indicate that corticomuscular dynamics vary significantly between involved (injured) and uninvolved legs of participants with ACLR during voluntary isometric contractions between the brain and both the vastus medialis and lateralis. This finding points to a potential lingering neural deficit underlying re-injury for athletes after surgical reconstruction, namely the dynamical structure of neuromuscular (brain to quad muscle) coordination, which is significantly asymmetric, between limbs, in those who have ACLR.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Lesiones de Repetición , Humanos , Lesiones del Ligamento Cruzado Anterior/cirugía , Lesiones de Repetición/cirugía , Músculo Cuádriceps/fisiología , Extremidades , Fuerza Muscular/fisiología
2.
Curr Rev Musculoskelet Med ; 17(1): 14-22, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38109007

RESUMEN

PURPOSE OF REVIEW: In this review, we present recent findings and advancements in the use of neuroimaging to evaluate neural activity relative to ACL injury risk and patellofemoral pain. In particular, we describe prior work using fMRI and EEG that demonstrate the value of these techniques as well as the necessity of continued development in this area. Our goal is to support future work by providing guidance for the successful application of neuroimaging techniques that most effectively expose pain and injury mechanisms. RECENT FINDINGS: Recent studies that utilized both fMRI and EEG indicate that athletes who are at risk for future ACL injury exhibit divergent brain activity both during active lower extremity movement and at rest. Such activity patterns are likely due to alterations to cognitive, visual, and attentional processes that manifest as coordination deficits during naturalistic movement that may result in higher risk of injury. Similarly, in individuals with PFP altered brain activity in a number of key regions is related to subjective pain judgements as well as measures of fear of movement. Although these findings may begin to allow objective pain assessment and identification, continued refinement is needed. One key limitation across both ACL and PFP related work is the restriction of movement during fMRI and EEG data collection, which drastically limits ecological validity. Given the lack of sufficient research using EEG and fMRI within a naturalistic setting, our recommendation is that researchers target the use of mobile, source localized EEG as a primary methodology for exposing neural mechanisms of ACL injury risk and PFP. Our contention is that this method provides an optimal balance of spatial and temporal resolution with ecological validity via naturalistic movement.

3.
Brain Sci ; 13(4)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37190628

RESUMEN

Optically pumped magnetometers (OPMs) can capture brain activity but are susceptible to magnetic noise. The objective of this study was to evaluate a novel methodology used to reduce magnetic noise in OPM measurements. A portable magnetoencephalography (MEG) prototype was developed with OPMs. The OPMs were divided into primary sensors and reference sensors. For each primary sensor, a synthetic gradiometer (SG) was constructed by computing a secondary sensor that simulated noise with signals from the reference sensors. MEG data from a phantom with known source signals and six human participants were used to assess the efficacy of the SGs. Magnetic noise in the OPM data appeared predominantly in a low frequency range (<4 Hz) and varied among OPMs. The SGs significantly reduced magnetic noise (p < 0.01), enhanced the signal-to-noise ratio (SNR) (p < 0.001) and improved the accuracy of source localization (p < 0.02). The SGs precisely revealed movement-evoked magnetic fields in MEG data recorded from human participants. SGs provided an effective method to enhance SNR and improve the accuracy of source localization by suppressing noise. Software-simulated SGs may provide new opportunities regarding the use of OPM measurements in various clinical and research applications, especially those in which movement is relevant.

4.
J Mot Behav ; 55(3): 245-255, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36642425

RESUMEN

The practice of early sport specialization, defined as intense year-round training in a single sport at the exclusion of others, is increasing in youth athletics. Despite potential benefits, sport specialization may be detrimental to the health of young athletes, as specialization may increase the risk of musculoskeletal injuries-particularly overuse injuries. However, there remains limited knowledge about how sports specialization uniquely alters underlying sports-related motor behavior. The purpose of this study was to compare the variability of movement patterns exhibited by highly sports specialized youth athletes to that of nonspecialized athletes during performance of a sport-specific, virtual reality based cutting task. It was hypothesized that highly specialized athletes would display different patterns of movement coordination compared to nonspecialized athletes during both the run-up phase and cut-and-decelerate phase. In support of the hypothesis, specialized athletes exhibited both intra- and inter-limb coordination that were significantly different than unspecialized athletes. Overall, the results indicate that the highly specialized athletes tended to exhibit greater degrees of coordination but also the ability to break the coordinated patterns of joint angle changes to execute a cutting maneuver, which requires asymmetric demands on the lower extremities while planting on one leg and changing direction.


Asunto(s)
Traumatismos en Atletas , Deportes , Adolescente , Humanos , Factores de Riesgo , Extremidad Inferior , Atletas
5.
J Athl Train ; 58(7-8): 648-654, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094615

RESUMEN

CONTEXT: Visual biofeedback has been shown to facilitate injury-resistant movement acquisition in adolescent athletes. Visual biofeedback is typically thought to foster implicit learning by stimulating athletes to focus attention externally (on movement outcome). However, biofeedback may also induce explicit learning if the athlete uses the visual information to consciously guide movement execution (via an internal focus). OBJECTIVE: To determine the degree to which athletes reported statements indicating implicit or explicit motor learning after engaging in a visual biofeedback intervention. DESIGN: Prospective cohort study. SETTING: Three-dimensional motion-analysis laboratory. PATIENTS OR OTHER PARTICIPANTS: Twenty-five adolescent female soccer athletes (age = 15.0 ± 1.5 years, height = 165.7 ± 5.9 cm, mass = 59.4 ± 10.6 kg). INTERVENTIONS: Standard 6-week neuromuscular training intervention (three 90-minute sessions/wk), with added visual biofeedback sessions (2 sessions/wk). For the biofeedback training, participants performed squatting and jumping movements while interacting with a visual rectangular stimulus that mapped key parameters associated with injury risk. After the last biofeedback session in each week, participants answered open-ended questions to probe learning strategies. MAIN OUTCOME MEASURE(S): Responses to the open-ended questions were categorized as externally focused (ie, on movement outcome, suggestive of implicit learning), internally focused (ie, on movement itself, suggestive of explicit learning), mixed focus, or other. RESULTS: A total of 171 open-ended responses were collected. Most of the responses that could be categorized (39.2%) were externally focused (41.8%), followed by mixed (38.8%) and internally focused (19.4%). The frequency of externally focused statements increased from week 1 (18%) to week 6 (50%). CONCLUSIONS: Although most statements were externally focused (suggesting implicit learning), the relatively large proportion of internal- and mixed-focus statements suggested that many athletes also engaged in explicit motor learning, especially in early practice sessions. Therefore, biofeedback may affect motor learning through a mixture of implicit and explicit learning.


Asunto(s)
Biorretroalimentación Psicológica , Movimiento , Adolescente , Humanos , Femenino , Estudios Prospectivos , Biorretroalimentación Psicológica/métodos , Postura , Aprendizaje/fisiología
6.
J Sport Rehabil ; 32(3): 248-255, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265842

RESUMEN

BACKGROUND: Young athletes who specialize early in a single sport may subsequently be at increased risk of injury. While heightened injury risk has been theorized to be related to volume or length of exposure to a single sport, the development of unhealthy, homogenous movement patterns, and rigid neuromuscular control strategies may also be indicted. Unfortunately, traditional laboratory assessments have limited capability to expose such deficits due to the simplistic and constrained nature of laboratory measurement techniques and analyses. METHODS: To overcome limitations of prior studies, the authors proposed a soccer-specific virtual reality header assessment to characterize the generalized movement regularity of 44 young female athletes relative to their degree of sport specialization (high vs low). Participants also completed a traditional drop vertical jump assessment. RESULTS: During the virtual reality header assessment, significant differences in center of gravity sample entropy (a measure of movement regularity) were present between specialized (center of gravity sample entropy: mean = 0.08, SD = 0.02) and nonspecialized center of gravity sample entropy: mean = 0.10, SD = 0.03) groups. Specifically, specialized athletes exhibited more regular movement patterns during the soccer header than the nonspecialized athletes. However, no significant between-group differences were observed when comparing participants' center of gravity time series data from the drop vertical jump assessment. CONCLUSIONS: This pattern of altered movement strategy indicates that realistic, sport-specific virtual reality assessments may be uniquely beneficial in exposing overly rigid movement patterns of individuals who engage in repeated sport specialized practice.


Asunto(s)
Traumatismos en Atletas , Fútbol , Deportes , Realidad Virtual , Humanos , Femenino , Fútbol/lesiones , Atletas , Movimiento
7.
Front Sports Act Living ; 4: 989799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36385777

RESUMEN

Background: Integrated movement and cognitive load paradigms are used to expose impairments associated with concussion and musculoskeletal injury. There is currently little information on the discriminatory nature of dual-task complexity and the relative influence of physical exertion on cognitive outcomes. Purpose: Assess cognitive performance while under motor conditions of increasing complexity before and after a standardized exercise protocol. Methods: 34 participants were recruited (17 male and 17 female; 24 ± 1.4 yrs). A modified Eriksen flanker test was used to assess cognitive performance under four conditions (seated, single-leg stance, walking, and lateral stepping) before and after a 20-min moderate-to vigorous intensity treadmill protocol. The flanker test consisted of 20 sets of 5-arrow configurations, appearing in random order. To complete the response to cognitive stimulus, participants held a smartphone horizontally and were instructed to respond as quickly and as accurately as possible by tilting the device in the direction corresponding to the orientation of the middle arrow. The metrics used for analysis included average reaction time (ms), inverse efficiency index (average reaction time penalized for incorrect responses), and conflict effect (the average time cost of responding to an incongruent repetition vs. a congruent repetition). Mixed effects (condition by time) RMANOVAs were conducted to examine the effects of motor task complexity and physical exertion on cognitive performance. Results: There was a condition by time interaction for inverse efficiency index (p < 0.001), in which participants displayed higher cognitive efficiency for the pre-activity lateral stepping condition compared to the other three conditions (Cohen's d = 1.3-1.6). For reaction time and conflict effect, there were main effects for condition (p = 0.004 and 0.006, respectively), in which performance during lateral stepping was improved in relation to the seated condition (reaction time Cohen's d = 0.68; conflict effect Cohen's d = 0.64). Conclusion: Participants tended to display better dual-task cognitive performance under more stimulating or complex motor tasks before physical exertion, likely associated with the inverted-U arousal-performance relationship. When using dual-task assessments, clinicians should be mindful of the accompanying motor task and baseline exertion levels and their potential to disrupt or optimize cognitive performance.

9.
J Neurophysiol ; 125(5): 1647-1662, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33788625

RESUMEN

Feedforward internal model-based control enabled by efference copies of motor commands is the prevailing theoretical account of motor anticipation. Grip force control during object manipulation-a paradigmatic example of motor anticipation-is a key line of evidence for that account. However, the internal model approach has not addressed the computational challenges faced by the act of manipulating mechanically complex objects with nonlinear, underactuated degrees of freedom. These objects exhibit complex and unpredictable load force dynamics which cannot be encoded by efference copies of underlying motor commands, leading to the prediction from the perspective of an efference copy-enabled feedforward control scheme that grip force should either lag or fail to coordinate with changes in load force. In contrast to that prediction, we found evidence for strong, precise, anticipatory grip force control during manipulations of a complex object. The results are therefore inconsistent with the internal forward model approach and suggest that efference copies of motor commands are not necessary to enable anticipatory control during active object manipulation.NEW & NOTEWORTHY From the perspective of feedforward internal model-based control, precise, anticipatory grip force (GF) control when manipulating a complex object should not be possible as the object's changing load forces (LFs) cannot be encoded by efference copies of the underlying movements. However, we observed that GF exhibited strong, precise, anticipatory coupling with LF during extended manipulations of a complex object. These findings suggest that an alternative theoretical framework is needed to account for anticipatory GF control.


Asunto(s)
Anticipación Psicológica/fisiología , Fuerza de la Mano/fisiología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Adolescente , Adulto , Fenómenos Biomecánicos/fisiología , Mano/fisiología , Humanos , Masculino , Modelos Biológicos , Realidad Virtual , Adulto Joven
10.
Psychophysiology ; 57(4): e13530, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31957903

RESUMEN

Anterior cruciate ligament (ACL) injuries are physically and emotionally debilitating for athletes,while motor and biomechanical deficits that contribute to ACL injury have been identified, limited knowledge about the relationship between the central nervous system (CNS) and biomechanical patterns of motion has impeded approaches to optimize ACL injury risk reduction strategies. In the current study it was hypothesized that high-risk athletes would exhibit altered temporal dynamics in their resting state electrocortical activity when compared to low-risk athletes. Thirty-eight female athletes performed a drop vertical jump (DVJ) to assess their biomechanical risk factors related to an ACL injury. The athletes' electrocortical activity was also recorded during resting state in the same visit as the DVJ assessment. Athletes were divided into low- and high-risk groups based on their performance of the DVJ. Recurrence quantification analysis was used to quantify the temporal dynamics of two frequency bands previously shown to relate to sensorimotor and attentional control. Results revealed that high-risk participants showed more deterministic electrocortical behavior than the low-risk group in the frontal theta and central/parietal alpha-2 frequency bands. The more deterministic resting state electrocortical dynamics for the high-risk group may reflect maladaptive neural behavior-excessively stable deterministic patterning that makes transitioning among functional task-specific networks more difficult-related to attentional control and sensorimotor processing neural regions.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Atletas , Fenómenos Biomecánicos/fisiología , Ondas Encefálicas/fisiología , Corteza Cerebral/fisiología , Actividad Motora/fisiología , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Adulto , Atención/fisiología , Función Ejecutiva/fisiología , Femenino , Humanos , Factores de Riesgo , Adulto Joven
11.
Exp Brain Res ; 237(1): 191-200, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30374783

RESUMEN

Two experiments investigated (1) the ability of individuals to perceive the passability of apertures that are constructed using two virtual sounds sources and (2) the nature of the perceptual information that is used when determining passability in such a way. In the first experiment, participants judged whether they could successfully walk between two sound sources, heard through headphones, without turning their shoulders. We hypothesized that judgements would be accurate and driven by the detection of a proposed informational variable that relates head rotation, forward locomotion and aperture width. To test this hypothesis, we used motion tracking and a gain manipulation to alter apparent head rotation relative to virtual sound source positions and evaluated the effect on performance. Participants were able to accurately judge aperture passability based only on acoustic information. However, the gain manipulation did not show a significant influence on perceptual reports. The unexpected significant influence of lateral head movement on perceptual accuracy, however, does suggest that an alternative informational variable, based on lateral movement, may have been used. In the second experiment, a group of participants with wide shoulders was compared to a group with narrow shoulders on a similar task. Significant differences in minimally acceptable aperture width were found between the wide and narrow groups. When these aperture widths were scaled to the participants' shoulder widths, however, the differences were no longer present. These findings are consistent with previous studies investigating perception of passability and offer promising applications of virtual reality technology in the study of auditory perceptual abilities.


Asunto(s)
Juicio/fisiología , Localización de Sonidos/fisiología , Sonido , Percepción Espacial/fisiología , Interfaz Usuario-Computador , Adolescente , Análisis de Varianza , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Caminata , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA