Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Immunol ; 211(9): 1308-1319, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721418

RESUMEN

Gain-of-function polymorphisms in the transcription factor IFN regulatory factor 5 (IRF5) are associated with an increased risk of developing systemic lupus erythematosus. Global homozygous or heterozygous deficiency of IRF5 from birth confers protection in many lupus mouse models. However, less is known about the effects of IRF5 targeting after autoimmunity has already developed. This is an important point to clarify when considering IRF5 as a potential therapeutic target in lupus. In this study, we demonstrate that genetic reduction of IRF5 expression after disease initiation reduces disease severity in the FcγRIIB-/- Y-linked autoimmune accelerating mouse lupus model. Reduction of IRF5 expression resulted in a decrease in splenomegaly and lymphadenopathy and a reduction in splenic B cell activation and plasmablast numbers. Splenic T cell activation and differentiation were also impacted as demonstrated by an increase in the number of naive CD4+ and CD8+ T cells and a reduction in the number of memory/effector CD4+ and CD8+ T cells. Although serum antinuclear autoantibody levels were not altered, reduction in IRF5 expression led to decreased immune complex deposition and complement activation, diminished glomerular and interstitial disease, and a reduction in immune cell infiltrate in the kidney. Mechanistically, myeloid cells in the kidney produced less inflammatory cytokines after TLR7 and TLR9 activation. Overall, we demonstrate that genetic reduction of IRF5 expression during an active autoimmune process is sufficient to reduce disease severity. Our data support consideration of IRF5 as a therapeutic target and suggest that approaches targeting IRF5 in systemic lupus erythematosus may need to impact IRF5 activity both systemically and in target organs.

2.
Lab Invest ; 103(9): 100190, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37268107

RESUMEN

Glomerulonephritis (GN) is a group of inflammatory diseases and an important cause of morbidity and mortality worldwide. The initiation of the inflammatory process is quite different for each type of GN; however, each GN is characterized commonly and variably by acute inflammation with neutrophils and macrophages and crescent formation, leading to glomerular death. Toll-like receptor (TLR) 7 is a sensor for self-RNA and implicated in the pathogenesis of human and murine GN. Here, we show that TLR7 exacerbates glomerular injury in nephrotoxic serum nephritis (NTN), a murine model of severe crescentic GN. TLR7-/- mice were resistant to NTN, although TLR7-/- mice manifested comparable immune-complex deposition to wild-type mice without significant defects in humoral immunity, suggesting that endogenous TLR7 ligands accelerate glomerular injury. TLR7 was expressed exclusively in macrophages in glomeruli in GN but not in glomerular resident cells or neutrophils. Furthermore, we discovered that epidermal growth factor receptor (EGFR), a receptor-type tyrosine kinase, is essential for TLR7 signaling in macrophages. Mechanistically, EGFR physically interacted with TLR7 upon TLR7 stimulation, and EGFR inhibitor completely blocked the phosphorylation of TLR7 tyrosine residue(s). EGFR inhibitor attenuated glomerular damage in wild-type mice, and no additional glomerular protective effects by EGFR inhibitor were observed in TLR7-/- mice. Finally, mice lacking EGFR in macrophages were resistant to NTN. This study clearly demonstrated that EGFR-dependent TLR7 signaling in macrophages is essential for glomerular injury in crescentic GN.


Asunto(s)
Factor de Crecimiento Epidérmico , Glomerulonefritis , Ratones , Humanos , Animales , Receptor Toll-Like 7 , Receptores ErbB , Macrófagos/metabolismo
3.
JCI Insight ; 6(15)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34197340

RESUMEN

Gain-of-function polymorphisms in the transcription factor IFN regulatory factor 5 (IRF5) are associated with an increased risk of developing systemic lupus erythematosus. However, the IRF5-expressing cell type(s) responsible for lupus pathogenesis in vivo is not known. We now show that monoallelic IRF5 deficiency in B cells markedly reduced disease in a murine lupus model. In contrast, similar reduction of IRF5 expression in macrophages, monocytes, and neutrophils did not reduce disease severity. B cell receptor and TLR7 signaling synergized to promote IRF5 phosphorylation and increase IRF5 protein expression, with these processes being independently regulated. This synergy increased B cell-intrinsic IL-6 and TNF-α production, both key requirements for germinal center (GC) responses, with IL-6 and TNF-α production in vitro and in vivo being substantially lower with loss of 1 allele of IRF5. Mechanistically, TLR7-dependent IRF5 nuclear translocation was reduced in B cells from IRF5-heterozygous mice. In addition, we show in multiple lupus models that IRF5 expression was dynamically regulated in vivo with increased expression in GC B cells compared with non-GC B cells and with further sequential increases during progression to plasmablasts and long-lived plasma cells. Overall, a critical threshold level of IRF5 in B cells was required to promote disease in murine lupus.


Asunto(s)
Linfocitos B/metabolismo , Factores Reguladores del Interferón , Interleucina-6/metabolismo , Lupus Eritematoso Sistémico , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Autoinmunidad , Modelos Animales de Enfermedad , Mutación con Ganancia de Función , Regulación de la Expresión Génica/inmunología , Centro Germinal , Factores Reguladores del Interferón/deficiencia , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Ratones , Transducción de Señal/inmunología
4.
Front Immunol ; 12: 614676, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897682

RESUMEN

The COVID-19 pandemic has drastically impacted work, economy, and way of life. Sensitive measurement of SARS-CoV-2 specific antibodies would provide new insight into pre-existing immunity, virus transmission dynamics, and the nuances of SARS-CoV-2 pathogenesis. To date, existing SARS-CoV-2 serology tests have limited utility due to insufficient reliable detection of antibody levels lower than what is typically present after several days of symptoms. To measure lower quantities of SARS-CoV-2 IgM, IgG, and IgA with higher resolution than existing assays, we developed a new ELISA protocol with a distinct plate washing procedure and timed plate development via use of a standard curve. Very low optical densities from samples added to buffer coated wells at as low as a 1:5 dilution are reported using this 'BU ELISA' method. Use of this method revealed circulating SARS-CoV-2 receptor binding domain (RBD) and nucleocapsid protein (N) reactive antibodies (IgG, IgM, and/or IgA) in 44 and 100 percent of pre-pandemic subjects, respectively, and the magnitude of these antibodies tracked with antibody levels of analogous viral proteins from endemic coronavirus (eCoV) strains. The disease status (HIV, SLE) of unexposed subjects was not linked with SARS-CoV-2 reactive antibody levels; however, quantities were significantly lower in subjects over 70 years of age compared with younger counterparts. Also, we measured SARS-CoV-2 RBD- and N- specific IgM, IgG, and IgA antibodies from 29 SARS-CoV-2 infected individuals at varying disease states, including 10 acute COVID-19 hospitalized subjects with negative serology results by the EUA approved Abbott IgG chemiluminescent microparticle immunoassay. Measurements of SARS-CoV-2 RBD- and N- specific IgM, IgG, IgA levels measured by the BU ELISA revealed higher signal from 9 of the 10 Abbott test negative COVID-19 subjects than all pre-pandemic samples for at least one antibody specificity/isotype, implicating improved serologic identification of SARS-CoV-2 infection via multi-parameter, high sensitive antibody detection. We propose that this improved ELISA protocol, which is straightforward to perform, low cost, and uses readily available commercial reagents, is a useful tool to elucidate new information about SARS-CoV-2 infection and immunity and has promising implications for improved detection of all analytes measurable by this platform.


Asunto(s)
Envejecimiento/inmunología , Anticuerpos Antivirales/inmunología , Prueba Serológica para COVID-19 , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/sangre , Anticuerpos Antivirales/sangre , COVID-19/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/metabolismo , Sensibilidad y Especificidad
5.
Elife ; 92020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32014112

RESUMEN

Cyclic AMP (cAMP) is involved in many biological processes but little is known regarding its role in shaping immunity. Here we show that cAMP-PKA-CREB signaling (a pattern recognition receptor [PRR]-independent mechanism) regulates conventional type-2 Dendritic Cells (cDC2s) in mice and reprograms their Th17-inducing properties via repression of IRF4 and KLF4, transcription factors essential for cDC2-mediated Th2 induction. In mice, genetic loss of IRF4 phenocopies the effects of cAMP on Th17 induction and restoration of IRF4 prevents the cAMP effect. Moreover, curdlan, a PRR-dependent microbial product, activates CREB and represses IRF4 and KLF4, resulting in a pro-Th17 phenotype of cDC2s. These in vitro and in vivo results define a novel signaling pathway by which cDC2s display plasticity and provide a new molecular basis for the classification of novel cDC2 and cDC17 subsets. The findings also reveal that repressing IRF4 and KLF4 pathway can be harnessed for immuno-regulation.


Asunto(s)
Factores Reguladores del Interferón , Receptores de Reconocimiento de Patrones , Transducción de Señal/inmunología , Células Th17 , Células Th2 , Animales , Línea Celular Tumoral , AMP Cíclico/inmunología , AMP Cíclico/metabolismo , Citocinas , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Factores Reguladores del Interferón/antagonistas & inhibidores , Factores Reguladores del Interferón/inmunología , Factores Reguladores del Interferón/metabolismo , Factor 4 Similar a Kruppel , Ratones , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Células Th2/inmunología , Células Th2/metabolismo
6.
Sci Rep ; 9(1): 20257, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882749

RESUMEN

Casitas B lymphoma (c-Cbl) is an E3 ubiquitin ligase and a negative regulator of colorectal cancer (CRC). Despite its high expression in immune cells, the effect of c-Cbl on the tumor microenvironment remains poorly understood. Here we demonstrate that c-Cbl alters the tumor microenvironment and suppresses Programmed cell death-1 (PD-1) protein, an immune checkpoint receptor. Using syngeneic CRC xenografts, we observed significantly higher growth of xenografts and infiltrating immune cells in c-Cbl+/- compared to c-Cbl+/+ mice. Tumor-associated CD8+ T-lymphocytes and macrophages of c-Cbl+/- mice showed 2-3-fold higher levels of PD-1. Functionally, macrophages from c-Cbl+/- mice showed a 4-5-fold reduction in tumor phagocytosis, which was restored with an anti-PD-1 neutralizing antibody suggesting regulation of PD-1 by c-Cbl. Further mechanistic probing revealed that C-terminus of c-Cbl interacted with the cytoplasmic tail of PD-1. c-Cbl destabilized PD-1 through ubiquitination- proteasomal degradation depending on c-Cbl's RING finger function. This data demonstrates c-Cbl as an E3 ligase of PD-1 and a regulator of tumor microenvironment, both of which were unrecognized components of its tumor suppressive activity. Advancing immune checkpoint and c-Cbl biology, our study prompts for probing of PD-1 regulation by c-Cbl in conditions driven by immune checkpoint abnormalities such as cancers and autoimmune diseases.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Neoplasias Colorrectales/genética , Receptor de Muerte Celular Programada 1/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-cbl/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Macrófagos/metabolismo , Ratones Noqueados , Fosforilación , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Carga Tumoral/genética , Microambiente Tumoral/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
8.
J Exp Med ; 214(5): 1297-1311, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28400473

RESUMEN

The spores of pathogenic bacteria are involved in host entry and the initial encounter with the host immune system. How bacterial spores interact with host immunity, however, remains poorly understood. Here, we show that the spores of Bacillus anthracis (BA), the etiologic agent of anthrax, possess an intrinsic ability to induce host immune responses. This immunostimulatory activity is attributable to high amounts of RNA present in the spore surface layer. RNA-sensing TLRs, TLR7, and TLR13 in mice and their human counterparts, are responsible for detecting and triggering the host cell response to BA spores, whereas TLR2 mediates the sensing of vegetative BA. BA spores, but not vegetative BA, induce type I IFN (IFN-I) production. Although TLR signaling in itself affords protection against BA, spore RNA-induced IFN-I signaling is disruptive to BA clearance. Our study suggests a role for bacterial spore-associated RNA in microbial pathogenesis and illustrates a little known aspect of interactions between the host and spore-forming bacteria.


Asunto(s)
ARN Bacteriano/inmunología , Esporas Bacterianas/inmunología , Receptores Toll-Like/fisiología , Animales , Bacillus anthracis/inmunología , Regulación de la Expresión Génica/fisiología , Interacciones Huésped-Patógeno/inmunología , Humanos , Ratones , Esporas Bacterianas/genética
9.
Immunity ; 46(1): 106-119, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28099860

RESUMEN

A hallmark of autoimmunity in murine models of lupus is the formation of germinal centers (GCs) in lymphoid tissues where self-reactive B cells expand and differentiate. In the host response to foreign antigens, follicular dendritic cells (FDCs) maintain GCs through the uptake and cycling of complement-opsonized immune complexes. Here, we examined whether FDCs retain self-antigens and the impact of this process in autoantibody secretion in lupus. We found that FDCs took up and retained self-immune complexes composed of ribonucleotide proteins, autoantibody, and complement. This uptake, mediated through CD21, triggered endosomal TLR7 and led to the secretion of interferon (IFN) α via an IRF5-dependent pathway. Blocking of FDC secretion of IFN-α restored B cell tolerance and reduced the amount of GCs and pathogenic autoantibody. Thus, FDCs are a critical source of the IFN-α driving autoimmunity in this lupus model. This pathway is conserved in humans, suggesting that it may be a viable therapeutic target in systemic lupus erythematosus.


Asunto(s)
Autoinmunidad/inmunología , Linfocitos B/inmunología , Células Dendríticas Foliculares/inmunología , Lupus Eritematoso Sistémico/inmunología , Animales , Autoantígenos/inmunología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Interferón-alfa/biosíntesis , Interferón-alfa/inmunología , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Reacción en Cadena de la Polimerasa , Receptor Toll-Like 7/inmunología , Transcriptoma
10.
Arthritis Rheumatol ; 67(12): 3146-57, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26315890

RESUMEN

OBJECTIVE: Polymorphisms in the transcription factor interferon regulatory factor 5 (IRF5) are associated with an increased risk of developing rheumatoid arthritis (RA). This study was undertaken to determine the role of IRF5 in a mouse model of arthritis development. METHODS: K/BxN serum-transfer arthritis was induced in mice deficient in IRF5, or lacking IRF5 only in myeloid cells, and arthritis severity was evaluated. K/BxN arthritis was also induced in mice deficient in TRIF, Toll-like receptor 2 (TLR2), TLR3, TLR4, and TLR7 to determine the pathways through which IRF5 might promote arthritis. In vitro studies were performed to determine the role of IRF5 in interleukin-1 (IL-1) receptor and TLR signaling. RESULTS: Arthritis severity was reduced in IRF5-deficient, TRIF-deficient, TLR3-deficient, and TLR7-deficient mice. The expression of multiple genes regulating neutrophil recruitment or function and bioactive IL-1ß formation was reduced in the joints during active arthritis in IRF5-deficient mice. In vitro studies showed that TLR7 and the TRIF-dependent TLR3 pathway induce proinflammatory cytokine production in disease-relevant cell types in an IRF5-dependent manner. CONCLUSION: Our findings indicate that IRF5 contributes to disease pathogenesis in inflammatory arthritis. This is likely due at least in part to the role of IRF5 in mediating proinflammatory cytokine production downstream of TLR7 and TLR3. Since TLR7 and TLR3 are both RNA-sensing TLRs, this suggests that endogenous RNA ligands present in the inflamed joint promote arthritis development. These findings may be relevant to human RA, since RNA capable of activating TLR7 and TLR3 is present in synovial fluid and TLR7 and TLR3 are up-regulated in the joints of RA patients.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Artritis Experimental/genética , Artritis Reumatoide/genética , Factores Reguladores del Interferón/genética , Glicoproteínas de Membrana/genética , Células Mieloides/metabolismo , Receptor Toll-Like 3/genética , Receptor Toll-Like 7/genética , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Animales , Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Técnicas In Vitro , Factores Reguladores del Interferón/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/inmunología , Índice de Severidad de la Enfermedad , Transducción de Señal , Líquido Sinovial/inmunología , Líquido Sinovial/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 3/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 7/inmunología
11.
Int J Parasitol ; 45(4): 203-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25666929

RESUMEN

ES-62 is an anti-inflammatory phosphorylcholine-containing glycoprotein secreted by the filarial nematode Acanthocheilonema viteae. Accelerated atherosclerosis frequently occurs in systemic lupus erythematosus, resulting in substantial cardiovascular morbidity and mortality. We examined the effects of ES-62 in the gld.apoE(-/-) mouse model of this condition. Treatment with ES-62 did not substantially modulate renal pathology but caused decreased anti-nuclear autoantibody levels. Moreover, a striking 60% reduction in aortic atherosclerotic lesions was observed, with an associated decrease in macrophages and fibrosis. We believe that these latter findings constitute the first example of a defined parasitic worm product with therapeutic potential in atherosclerosis: ES-62-based drugs may represent a novel approach to control accelerated atherosclerosis in systemic lupus erythematosus.


Asunto(s)
Aterosclerosis/prevención & control , Proteínas del Helminto/administración & dosificación , Factores Inmunológicos/administración & dosificación , Lupus Eritematoso Sistémico/complicaciones , Animales , Anticuerpos Antinucleares/sangre , Aterosclerosis/patología , Modelos Animales de Enfermedad , Fibrosis/patología , Macrófagos/inmunología , Masculino , Ratones , Ratones Noqueados
12.
J Immunol ; 194(4): 1467-79, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25595782

RESUMEN

Premature atherosclerosis is a severe complication of lupus and other systemic autoimmune disorders. Gain-of-function polymorphisms in IFN regulatory factor 5 (IRF5) are associated with an increased risk of developing lupus, and IRF5 deficiency in lupus mouse models ameliorates disease. However, whether IRF5 deficiency also protects against atherosclerosis development in lupus is not known. In this study, we addressed this question using the gld.apoE(-/-) mouse model. IRF5 deficiency markedly reduced lupus disease severity. Unexpectedly, despite the reduction in systemic immune activation, IRF5-deficient mice developed increased atherosclerosis and also exhibited metabolic dysregulation characterized by hyperlipidemia, increased adiposity, and insulin resistance. Levels of the atheroprotective cytokine IL-10 were reduced in aortae of IRF5-deficient mice, and in vitro studies demonstrated that IRF5 is required for IL-10 production downstream of TLR7 and TLR9 signaling in multiple immune cell types. Chimera studies showed that IRF5 deficiency in bone marrow-derived cells prevents lupus development and contributes in part to the increased atherosclerosis. Notably, IRF5 deficiency in non-bone marrow-derived cells also contributes to the increased atherosclerosis through the generation of hyperlipidemia and increased adiposity. Together, our results reveal a protective role for IRF5 in lupus-associated atherosclerosis that is mediated through the effects of IRF5 in both immune and nonimmune cells. These findings have implications for the proposed targeting of IRF5 in the treatment of autoimmune disease as global IRF5 inhibition may exacerbate cardiovascular disease in these patients.


Asunto(s)
Aterosclerosis/etiología , Factores Reguladores del Interferón/inmunología , Lupus Eritematoso Sistémico/inmunología , Síndrome Metabólico/etiología , Animales , Aterosclerosis/inmunología , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Factores Reguladores del Interferón/deficiencia , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/patología , Masculino , Síndrome Metabólico/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Exp Dermatol ; 24(2): 133-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25425469

RESUMEN

Toll-like receptor 9 (TLR9) drives innate immune responses after recognition of foreign or endogenous DNA containing unmethylated CpG motifs. DNA-mediated TLR9 activation is highly implicated in the pathogenesis of several autoimmune skin diseases, yet its contribution to the inflammation seen in these diseases remains unclear. In this study, TLR9 ligand, CpGB DNA, was administered to mice via a subcutaneous osmotic pump with treatment lasting 1 or 4 weeks. Gene expression and immunofluorescence analyses were used to determine chemokine expression and cell recruitment in the skin surrounding the pump outlet. CpGB DNA skin treatment dramatically induced a marked influx of CD11b+ F4/80+ macrophages, increasing over 4 weeks of treatment, and induction of IFNγ and TNFα expression. Chemokines, CCL2, CCL4, CCL5, CXCL9 and CXCL10, were highly induced in CpGB DNA-treated skin, although abrogation of these signalling pathways individually did not alter macrophage accumulation. Flow cytometry analysis showed that TLR9 activation in the skin increased circulating CD11b+ CD115+ Ly6C(hi) inflammatory monocytes following 1 week of CpGB DNA treatment. Additionally, skin-resident CD11b+ cells were found to initially take up subcutaneous CpGB DNA and propagate the subsequent immune response. Using diphtheria toxin-induced monocyte depletion mouse model, gene expression analysis demonstrated that CD11b+ cells are responsible for the CpGB DNA-induced cytokine and chemokine response. Overall, these data demonstrate that chronic TLR9 activation induces a specific inflammatory response, ultimately leading to a striking and selective accumulation of macrophages in the skin.


Asunto(s)
Islas de CpG , Activación de Macrófagos , Macrófagos/metabolismo , Piel/metabolismo , Administración Cutánea , Animales , Antígeno CD11b/metabolismo , Quimiocinas/metabolismo , ADN , Toxina Diftérica/química , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inmunohistoquímica , Inflamación/metabolismo , Interferón gamma/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Monocitos/citología , Ósmosis , Piel/citología , Receptor Toll-Like 9/metabolismo
14.
J Immunol ; 194(1): 101-12, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25416804

RESUMEN

A subset of chronic lymphocytic leukemia (CLL) BCRs interacts with Ags expressed on apoptotic cells, suggesting that CLL BCRs have the potential to internalize apoptotic cell RNA- or DNA-containing fragments with resultant activation of TLR7 or TLR9, respectively. By blocking cAMP degradation, type 4 cAMP phosphodiesterase (PDE4) inhibitors activate cAMP-mediated signaling and induce apoptosis in CLL cells. In this study, we show that autologous irradiated leukemic cells induce proliferation in CLL cells and that such proliferation is blocked by a TLR7/8/9 inhibitor, by DNase, and by the PDE4 inhibitor rolipram. Rolipram also inhibited CLL cell proliferation induced by synthetic TLR7 and TLR9 agonists, as well as TLR agonist-induced costimulatory molecule expression and TNF-a (but not IL-6 or IL-10) production. Whereas treatment with a TLR9 agonist protected IgH V region unmutated, but not mutated, CLL cells from apoptosis, PDE4 inhibitors augmented apoptosis in both subtypes, suggesting that cAMP-mediated signaling may abrogate a TLR9-mediated survival signal in prognostically unfavorable IGHV unmutated CLL cells. Rolipram inhibited both TLR7/8- and TLR9-induced IFN regulatory factor 5 and NF-kB p65 nuclear translocation. PDE4 inhibitors also blocked TLR signaling in normal human immune cells. In PBMC and CD14-positive monocytes, PDE4 inhibitors blocked IFN-a or TNF-a (but not IL-6) production, respectively, following stimulation with synthetic TLR agonists or RNA-containing immune complexes. These results suggest that PDE4 inhibitors may be of clinical utility in CLL or autoimmune diseases that are driven by TLR-mediated signaling.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Rolipram/farmacología , Transporte Activo de Núcleo Celular , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Secuencia de Bases , Proliferación Celular/efectos de los fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Desoxirribonucleasas/farmacología , Femenino , Humanos , Factores Reguladores del Interferón/metabolismo , Interferón-alfa/biosíntesis , Interleucina-10/biosíntesis , Interleucina-6/biosíntesis , Leucemia Linfocítica Crónica de Células B/inmunología , Receptores de Lipopolisacáridos/metabolismo , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Análisis de Secuencia de ADN , Transducción de Señal , Receptor Toll-Like 7/antagonistas & inhibidores , Receptor Toll-Like 8/antagonistas & inhibidores , Receptor Toll-Like 9/antagonistas & inhibidores , Factor de Transcripción ReIA/antagonistas & inhibidores , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis
15.
PLoS One ; 9(10): e108553, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25279834

RESUMEN

As part of the Immunological Genome Project (ImmGen), gene expression was determined in unstimulated (circulating) mouse neutrophils and three populations of neutrophils activated in vivo, with comparison among these populations and to other leukocytes. Activation conditions included serum-transfer arthritis (mediated by immune complexes), thioglycollate-induced peritonitis, and uric acid-induced peritonitis. Neutrophils expressed fewer genes than any other leukocyte population studied in ImmGen, and down-regulation of genes related to translation was particularly striking. However, genes with expression relatively specific to neutrophils were also identified, particularly three genes of unknown function: Stfa2l1, Mrgpr2a and Mrgpr2b. Comparison of genes up-regulated in activated neutrophils led to several novel findings: increased expression of genes related to synthesis and use of glutathione and of genes related to uptake and metabolism of modified lipoproteins, particularly in neutrophils elicited by thioglycollate; increased expression of genes for transcription factors in the Nr4a family, only in neutrophils elicited by serum-transfer arthritis; and increased expression of genes important in synthesis of prostaglandins and response to leukotrienes, particularly in neutrophils elicited by uric acid. Up-regulation of genes related to apoptosis, response to microbial products, NFkB family members and their regulators, and MHC class II expression was also seen, in agreement with previous studies. A regulatory model developed from the ImmGen data was used to infer regulatory genes involved in the changes in gene expression during neutrophil activation. Among 64, mostly novel, regulatory genes predicted to influence these changes in gene expression, Irf5 was shown to be important for optimal secretion of IL-10, IP-10, MIP-1α, MIP-1ß, and TNF-α by mouse neutrophils in vitro after stimulation through TLR9. This data-set and its analysis using the ImmGen regulatory model provide a basis for additional hypothesis-based research on the importance of changes in gene expression in neutrophils in different conditions.


Asunto(s)
Citocinas/metabolismo , Expresión Génica , Activación Neutrófila/genética , Neutrófilos/metabolismo , Animales , Citocinas/genética , Ratones , Activación Transcripcional , Regulación hacia Arriba
16.
PLoS One ; 9(7): e103478, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25076492

RESUMEN

Interferon regulatory factor 5 (IRF5) polymorphisms are strongly associated with an increased risk of developing the autoimmune disease systemic lupus erythematosus. In mouse lupus models, IRF5-deficiency was shown to reduce disease severity consistent with an important role for IRF5 in disease pathogenesis. However these mouse studies were confounded by the recent demonstration that the IRF5 knockout mouse line contained a loss-of-function mutation in the dedicator of cytokinesis 2 (DOCK2) gene. As DOCK2 regulates lymphocyte trafficking and Toll-like receptor signaling, this raised the possibility that some of the protective effects attributed to IRF5 deficiency in the mouse lupus models may instead have been due to DOCK2 deficiency. We have therefore here evaluated the effect of IRF5-deficiency in the MRL/lpr mouse lupus model in the absence of the DOCK2 mutation. We find that IRF5-deficient (IRF5-/-) MRL/lpr mice develop much less severe disease than their IRF5-sufficient (IRF5+/+) littermates. Despite markedly lower serum levels of anti-nuclear autoantibodies and reduced total splenocyte and CD4+ T cell numbers, IRF5-/- MRL/lpr mice have similar numbers of all splenic B cell subsets compared to IRF5+/+ MRL/lpr mice, suggesting that IRF5 is not involved in B cell development up to the mature B cell stage. However, IRF5-/- MRL/lpr mice have greatly reduced numbers of spleen plasmablasts and bone marrow plasma cells. Serum levels of B lymphocyte stimulator (BLyS) were markedly elevated in the MRL/lpr mice but no effect of IRF5 on serum BLyS levels was seen. Overall our data demonstrate that IRF5 contributes to disease pathogenesis in the MRL/lpr lupus model and that this is due, at least in part, to the role of IRF5 in plasma cell formation. Our data also suggest that combined therapy targeting both IRF5 and BLyS might be a particularly effective therapeutic approach in lupus.


Asunto(s)
Proteínas Activadoras de GTPasa/genética , Factores Reguladores del Interferón/genética , Lupus Eritematoso Sistémico/patología , Animales , Autoanticuerpos/sangre , Factor Activador de Células B/sangre , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido , Isotipos de Inmunoglobulinas/metabolismo , Factores Reguladores del Interferón/deficiencia , Factores Reguladores del Interferón/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/mortalidad , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Ratones Noqueados , Mutación , Índice de Severidad de la Enfermedad , Bazo/citología , Análisis de Supervivencia , Células TH1/metabolismo
17.
Methods Mol Biol ; 1169: 143-58, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24957237

RESUMEN

Impaired apoptotic cell clearance is thought to contribute to the pathogenesis of systemic autoimmune disease, in particular systemic lupus erythematosus (SLE). Endogenous RNA- and DNA-containing autoantigens released from dying cells can engage Toll-like receptors (TLR) 7/8 and TLR9, respectively in a number of immune cell types, thereby promoting innate and adaptive immune responses. Mouse models of lupus reliably phenocopy many of the characteristic features of SLE in humans and these models have proved invaluable in defining disease mechanisms. TLR7 signaling is essential for the development of autoantibodies to RNA and RNA-associated proteins like Sm and RNP, while TLR9 signaling is important for the development of antibodies to DNA and chromatin. TLR7 deficiency ameliorates end-organ disease, but, surprisingly, TLR9 deficiency exacerbates disease, possibly as a result of TLR7 overactivity in TLR9-deficient mice. Deficiency of interferon regulatory factor 5 (IRF5) inhibits autoantibody production and ameliorates disease likely due to its role in both TLR7 and TLR9 signaling. In this report we describe methods to analyze two commonly used mouse models of SLE in which TLRs and/or IRF5 have been shown to play a role in disease pathogenesis.


Asunto(s)
Lupus Eritematoso Sistémico/inmunología , Ácidos Nucleicos/inmunología , Animales , Modelos Animales de Enfermedad , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Lupus Eritematoso Sistémico/genética , Ratones , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/genética , Receptor Toll-Like 8/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
18.
Immunology ; 142(3): 363-73, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24456224

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are known to have many immunomodulatory effects. We have previously shown that the PPARγ agonist rosiglitazone is beneficial when used early in prevention of disease in murine models of systemic lupus erythematosus (SLE) and SLE-related atherosclerosis. In this report, we demonstrate that another PPARγ agonist, pioglitazone is also beneficial as a treatment for early murine lupus, indicating that this is a class effect and not agent-specific. We further attempt to define the ability of PPARγ agonists to ameliorate established or severe autoimmune disease using two mouse models: the MRL.lpr SLE model and the gld.apoE(-/-) model of accelerated atherosclerosis and SLE. We demonstrate that, in contrast to the marked amelioration of disease seen when PPARγ agonist treatment was started before disease onset, treatment with rosiglitazone after disease onset in MRL.lpr or gld.apoE(-/-) mice had minimal beneficial effect on the development of the autoimmune phenotype; however, rosiglitazone treatment remained highly effective at reducing lupus-associated atherosclerosis in gld.apoE(-/-) mice after disease onset or when mice were maintained on a high cholesterol Western diet. These results suggest that beneficial effects of PPARγ agonists on the development of autoimmunity might be limited to the early stages of disease, but that atherosclerosis, a major cause of death in SLE patients, may be ameliorated even in established or severe disease.


Asunto(s)
Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/prevención & control , PPAR gamma/agonistas , Tiazolidinedionas/farmacología , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/inmunología , Lupus Eritematoso Sistémico/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/inmunología , Pioglitazona , Rosiglitazona , Tiazolidinedionas/química , Tiazolidinedionas/uso terapéutico
19.
PLoS One ; 8(4): e61042, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23577189

RESUMEN

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that is characterized by autoantibody production and inflammatory disease involving multiple organs. Premature atherosclerosis is a common complication of SLE and results in substantial morbidity and mortality from cardiovascular disease (CVD). The reasons for the premature atherosclerosis in SLE are incompletely understood, although chronic inflammation is thought to play an important role. There is currently no known preventative treatment of premature atherosclerosis in SLE. Mycophenolate mofetil (MMF) is an immunosuppressive agent that is commonly used for treatment of patients with SLE. In order to study the impact of this drug on murine lupus disease including premature atherosclerosis development, we treated gld.apoE(-/-) mice, a model of SLE and accelerated atherosclerosis, with MMF. We maintained seven-week old gld.apoE(-/-) mice on a high cholesterol Western diet with or without MMF. After 12 weeks on diet, mice receiving MMF showed decreased atherosclerotic lesion area compared to the control group. MMF treatment also improved the lupus phenotype, indicated by a significant decrease circulating autoantibody levels and ameliorating lupus nephritis associated with this model. This data suggests that the effects of MMF on the immune system may not only be beneficial for lupus, but also for inflammation driving lupus-associated atherosclerosis.


Asunto(s)
Apolipoproteínas E/deficiencia , Aterosclerosis/complicaciones , Aterosclerosis/tratamiento farmacológico , Proteína Ligando Fas/deficiencia , Inmunosupresores/farmacología , Lupus Eritematoso Sistémico/complicaciones , Ácido Micofenólico/análogos & derivados , Animales , Aterosclerosis/fisiopatología , Autoanticuerpos/metabolismo , Peso Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ingestión de Alimentos/efectos de los fármacos , Humanos , Inmunosupresores/uso terapéutico , Enfermedades Linfáticas/complicaciones , Enfermedades Linfáticas/tratamiento farmacológico , Ratones , Ácido Micofenólico/farmacología , Ácido Micofenólico/uso terapéutico , Nefritis/complicaciones , Nefritis/tratamiento farmacológico , Esplenomegalia/complicaciones , Esplenomegalia/tratamiento farmacológico
20.
Int Immunol ; 25(5): 295-306, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23291967

RESUMEN

Interferon regulatory factor 5-deficient (IRF5 (-/-) ) mice have been used for many studies of IRF5 biology. A recent report identifies a mutation in dedicator of cytokinesis 2 (DOCK2) as being responsible for the abnormal B-cell development phenotype observed in the IRF5 (-/-) line. Both dedicator of cytokinesis 2 (DOCK2) and IRF5 play important roles in immune cell function, raising the issue of whether immune effects previously associated with IRF5 are due to IRF5 or DOCK2. Here, we defined the insertion end-point of the DOCK2 mutation and designed a novel PCR to detect the mutation in genomic DNA. We confirmed the association of the DOCK2 mutation and the abnormal B-cell phenotype in our IRF5 (-/-) line and also established another IRF5 (-/-) line without the DOCK2 mutation. These two lines were used to compare the role of IRF5 in dendritic cells (DCs) and B cells in the presence or absence of the DOCK2 mutation. IRF5 deficiency reduces IFN-α, IFN-ß and IL-6 production by Toll-like receptor 9 (TLR9)- and TLR7-stimulated DCs and reduces TLR7- and TLR9-induced IL-6 production by B cells to a similar extent in the two lines. Importantly however, IRF5 (-/-) mice with the DOCK2 mutation have higher serum levels of IgG1 and lower levels of IgG2b, IgG2a/c and IgG3 than IRF5 (-/-) mice without the DOCK2 mutation, suggesting that the DOCK2 mutation confers additional Th2-type effects. Overall, these studies help clarify the function of IRF5 in B cells and DCs in the absence of the DOCK2 mutation. In addition, the PCR described will be useful for other investigators using the IRF5 (-/-) mouse line.


Asunto(s)
Linfocitos B/metabolismo , Células Dendríticas/metabolismo , Proteínas Activadoras de GTPasa/genética , Factores Reguladores del Interferón/deficiencia , Animales , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido , Factores Reguladores del Interferón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA