RESUMEN
The Special Issue "Advanced Research in Neuroinflammation" offers a rich and diverse collection of studies that deepen our understanding of how inflammatory mediators are involved in various neurological conditions [...].
RESUMEN
Berberine (BER) is an alkaloid found, together with other protoberberinoids (PROTBERs), in several species used in medicines and food supplements. While some herbal preparations containing BER and PROTBERs, such as Berberis aristata DC. bark extracts, have shown promising potential for human health, their safety has not been fully assessed. Recently, the EFSA issued a call for data to deepen the pharmacokinetic and pharmacodynamic understanding of products containing BER and PROTBERs and to comprehensively assess their safety, especially when used in food supplements. In this context, new data were collected in this work by assessing: (i) the phytochemical profile of 16 different commercial B. aristata dry extracts, which are among the most widely used preparations containing BER and PROTBERs in Europe; (ii) the In Vitro and In Silico investigation of the pharmacokinetic properties of BER and PROTBERs; (iii) the In Vitro cytotoxicity of selected extracts in different human cell lines, including tests on hepatic cells in the presence of CYP450 substrates; (iv) the effects of the extracts on cancer cell migration; and (v) the In Vitro molecular effects of extracts in non-cancer human cells. Results showed that commercial B. aristata extracts contain BER as the main constituent, with jatrorrhizine as main secondary PROTBER. BER and jatrorrhizine were found to have a good bioaccessibility rate, but they interact with P-gp. B. aristata extracts showed limited cytotoxicity and minimal interaction with CYP450 substrates. Furthermore, tested extracts demonstrated inhibition of cancer cell migration and were devoid of any pro-tumoral effects in normal cells. Overall, our work provides a valuable overview to better elucidate important concerns regarding botanicals containing BER and PROTBERs.
Asunto(s)
Berberina , Berberis , Simulación por Computador , Corteza de la Planta , Extractos Vegetales , Berberis/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/farmacocinética , Corteza de la Planta/química , Berberina/farmacocinética , Berberina/análogos & derivados , Berberina/farmacología , Disponibilidad Biológica , Movimiento Celular/efectos de los fármacos , Fitoquímicos/farmacología , Fitoquímicos/farmacocinética , Línea Celular TumoralRESUMEN
BACKGROUND: Inflammasome overactivation, multiprotein complexes that trigger inflammatory responses, plays a critical role in Major Depressive Disorder (MDD) pathogenesis and treatment responses. Indeed, different antidepressants alleviate depression-related behaviours by specifically counteracting the NLRP3 inflammasome signalling pathway. The immunomodulatory effects of vortioxetine (VTX), a multimodal antidepressant with cognitive benefits, were recently revealed to counter memory impairment induced by a peripheral lipopolysaccharide (LPS) injection 24 hours (h) postchallenge. METHODS: The potential link between VTX and NLRP3, along with other inflammasomes, remains unexplored. Hence, adult C57BL/6J male mice (n = 73) were fed with a standard or VTX-enriched diet (600 mg/kg of food, 28 days), injected with LPS (830 µg/kg) or saline, and sacrificed 6/24 h post-LPS. At these time-points, transcriptional effects of LPS and VTX's on NLRP3, NLRP1, NLRC4, AIM2 (inflammasomes), ASC and CASP1 (related subunits) and NEK7 mediator (NLRP3 regulator) were assessed in dorsal and ventral hippocampal subregions, frontal-prefrontal cortex and hypothalamus, brain regions serving behavioural-cognitive functions impaired in MDD. RESULTS: Varied expression patterns of inflammasomes were revealed, with long-term NLRP3 and ASC transcriptional changes observed in response to LPS. It was discovered that VTX counteracted the LPS-mediated NLRP3 and ASC upregulation in memory-related brain areas like the dorsal hippocampus at 24 h time-point, potentially via regulating NEK7 expression. No VTX-mediated transcriptional effects were observed on other inflammasomes, reinforcing a potentially specific modulation on the NLRP3 inflammasome signalling pathway. CONCLUSION: Thus, a novel VTX's molecular mechanism in modulating the NLRP3 inflammasome in a time- and area-specific manner in the brain was highlighted, with significant clinical implications in treating depression and cognitive impairments.
.RESUMEN
The endocannabinoid system (ECS) plays an important role in neuroprotection, neuroplasticity, energy balance, modulation of stress, and inflammatory responses, acting as a critical link between the brain and the body's peripheral regions, while also offering promising potential for novel therapeutic strategies. Unfortunately, in humans, pharmacological inhibitors of different ECS enzymes have led to mixed results in both preclinical and clinical studies. As the ECS has been highly conserved throughout the eukaryotic lineage, the use of invertebrate model organisms like the pond snail Lymnaea stagnalis may provide a flexible tool to unravel unexplored functions of the ECS at the cellular, synaptic, and behavioral levels. In this study, starting from the available genome and transcriptome of L. stagnalis, we first identified putative transcripts of all ECS enzymes containing an open reading frame. Each predicted protein possessed a high degree of sequence conservation to known orthologues of other invertebrate and vertebrate organisms. Sequences were confirmed by qualitative PCR and sequencing. Then, we investigated the transcriptional effects induced by different stress conditions (i.e., bacterial LPS injection, predator scent, food deprivation, and acute heat shock) on the expression levels of the enzymes of the ECS in Lymnaea's central ring ganglia. Our results suggest that in Lymnaea as in rodents, the ECS is involved in mediating inflammatory and anxiety-like responses, promoting energy balance, and responding to acute stressors. To our knowledge, this study offers the most comprehensive analysis so far of the ECS in an invertebrate model organism.
Asunto(s)
Endocannabinoides , Lymnaea , Animales , Lymnaea/metabolismo , Endocannabinoides/metabolismo , Ganglios de Invertebrados/metabolismo , Ganglios de Invertebrados/enzimología , Estrés Fisiológico/fisiología , Lipopolisacáridos/farmacologíaRESUMEN
Lymnaea stagnalis learns and remembers to avoid certain foods when their ingestion is followed by sickness. This rapid, taste-specific, and long-lasting aversion-known as the Garcia effect-can be formed by exposing snails to a novel taste and 1 h later injecting them with lipopolysaccharide (LPS). However, the exposure of snails to acetylsalicylic acid (ASA) for 1 h before the LPS injection, prevents both the LPS-induced sickness state and the Garcia effect. Here, we investigated novel aspects of this unique form of conditioned taste aversion and its pharmacological regulation. We first explored the transcriptional effects in the snails' central nervous system induced by the injection with LPS (25 mg), the exposure to ASA (900 nM), as well as their combined presentation in untrained snails. Then, we investigated the behavioral and molecular mechanisms underlying the LPS-induced Garcia effect and its pharmacological regulation by ASA. LPS injection, both alone and during the Garcia effect procedure, upregulated the expression levels of immune- and stress-related targets. This upregulation was prevented by pre-exposure to ASA. While LPS alone did not affect the expression levels of neuroplasticity genes, its combination with the conditioning procedure resulted in their significant upregulation and memory formation for the Garcia effect.
RESUMEN
The incidence and collective impact of early adverse experiences, trauma, and pain continue to increase. This underscores the urgent need for translational efforts between clinical and preclinical research to better understand the underlying mechanisms and develop effective therapeutic approaches. As our understanding of these issues improves from studies in children and adolescents, we can create more precise preclinical models and ultimately translate our findings back to clinical practice. A multidisciplinary approach is essential for addressing the complex and wide-ranging effects of these experiences on individuals and society. This narrative review aims to (1) define pain and trauma experiences in childhood and adolescents, (2) discuss the relationship between pain and trauma, (3) consider the role of biological memory, (4) decipher the relationship between pain and trauma using preclinical data, and (5) examine the role of the environment by introducing the importance of epigenetic processes. The ultimate scope is to better understand the wide-ranging effects of trauma, abuse, and chronic pain on children and adolescents, how they occur, and how to prevent or mitigate their effects and develop effective treatment strategies that address both the underlying causes and the associated physiological and psychological effects.
RESUMEN
Aberrant splicing events are associated with colorectal cancer (CRC) and provide new opportunities for tumor diagnosis and treatment. The expression of the splice variants of NF-YA, the DNA binding subunit of the transcription factor NF-Y, is deregulated in multiple cancer types compared to healthy tissues. NF-YAs and NF-YAl isoforms differ in the transactivation domain, which may result in distinct transcriptional programs. In this study, we demonstrated that the NF-YAl transcript is higher in aggressive mesenchymal CRCs and predicts shorter patients' survival. In 2D and 3D conditions, CRC cells overexpressing NF-YAl (NF-YAlhigh) exhibit reduced cell proliferation, rapid single cell amoeboid-like migration, and form irregular spheroids with poor cell-to-cell adhesion. Compared to NF-YAshigh, NF-YAlhigh cells show changes in the transcription of genes involved in epithelial-mesenchymal transition, extracellular matrix and cell adhesion. NF-YAl and NF-YAs bind similarly to the promoter of the E-cadherin gene, but oppositely regulate its transcription. The increased metastatic potential of NF-YAlhigh cells in vivo was confirmed in zebrafish xenografts. These results suggest that the NF-YAl splice variant could be a new CRC prognostic factor and that splice-switching strategies may reduce metastatic CRC progression.
Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Animales , Humanos , Pez Cebra/genética , Factores de Transcripción , Neoplasias del Colon/genética , Transición Epitelial-Mesenquimal/genética , Matriz Extracelular , Sorbitol , Movimiento Celular/genética , Neoplasias Colorrectales/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión GénicaRESUMEN
In the last years, the medicinal plant Perilla frutescens (L.) Britton has gained scientific interest because leaf extracts, due to the presence of rosmarinic acid and other polyphenols, have shown anti-allergic and skin protective potential in pre-clinical studies. Nevertheless, the lack of standardized extracts has limited clinical applications to date. In this work, for the first time, a standardized phytocomplex of P. frutescens, enriched in rosmarinic acid and total polyphenols, was produced through innovative in vitro cell culture biotechnology and tested. The activity of perilla was evaluated in an in vitro inflammatory model of human keratinocytes (HaCaT) by monitoring tight junctions, filaggrin, and loricrin protein levels, the release of pro-inflammatory cytokines and JNK MAPK signaling. In a practical health care application, the perilla biotechnological phytocomplex was tested in a multilayer model of vaginal mucosa, and then, in a preliminary clinical observation to explore its capacity to preserve vaginal mucosal integrity in women in peri-menopause. In keratinocytes cells, perilla phytocomplex demonstrated to exert a marked activity in epidermis barrier maintenance and anti-inflammatory effects, preserving tight junction expression and downregulating cytokines release through targeting JNK activation. Furthermore, perilla showed positive effects in retaining vaginal mucosal integrity in the reconstructed vaginal mucosa model and in vivo tests. Overall, our data suggest that the biotechnological P. frutescens phytocomplex could represent an innovative ingredient for dermatological applications.
RESUMEN
In this Commentary, we shed light on the use of invertebrates as model organisms for understanding the causal and conserved mechanisms of learning and memory. We provide a condensed chronicle of the contribution offered by mollusks to the studies on how and where the nervous system encodes and stores memory and describe the rich cognitive capabilities of some insect species, including attention and concept learning. We also discuss the use of planarians for investigating the dynamics of memory during brain regeneration and highlight the role of stressful stimuli in forming memories. Furthermore, we focus on the increasing evidence that invertebrates display some forms of emotions, which provides new opportunities for unveiling the neural and molecular mechanisms underlying the complex interaction between stress, emotions and cognition. In doing so, we highlight experimental challenges and suggest future directions that we expect the field to take in the coming years, particularly regarding what we, as humans, need to know for preventing and/or delaying memory loss. This article has an associated ECR Spotlight interview with Veronica Rivi.
Asunto(s)
Invertebrados , Aprendizaje , Animales , Humanos , Invertebrados/fisiología , Cognición/fisiología , Encéfalo/fisiología , Emociones/fisiologíaRESUMEN
Cannabis sativa L. is increasingly emerging for its protective role in modulating neuroinflammation, a complex process orchestrated among others by microglia, the resident immune cells of the central nervous system. Phytocannabinoids, especially cannabidiol (CBD), terpenes, and other constituents trigger several upstream and downstream microglial intracellular pathways. Here, we investigated the molecular mechanisms of a CBD- and terpenes-enriched C. sativa extract (CSE) in an in vitro model of neuroinflammation. We evaluated the effect of CSE on the inflammatory response induced by exposure to lipopolysaccharide (LPS) in BV-2 microglial cells, compared with CBD and ß-caryophyllene (CAR), CB2 receptors (CB2r) inverse and full agonist, respectively. The LPS-induced upregulation of the pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α was significantly attenuated by CSE and only partially by CBD, whereas CAR was ineffective. In BV-2 cells, these anti-inflammatory effects exerted by CSE phytocomplex were only partially dependent on CB2r modulation and they were mediated by the regulation of enzymes responsible for the endocannabinoids metabolism, by the inhibition of reactive oxygen species release and the modulation of JNK/p38 cascade with consequent NF-κB p65 nuclear translocation suppression. Our data suggest that C. sativa phytocomplex and its multitarget mechanism could represent a novel therapeutic strategy for neuroinflammatory-related diseases.
Asunto(s)
Cannabidiol , Cannabis , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Citocinas/metabolismo , Endocannabinoides/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Microglía , FN-kappa B/metabolismo , Receptor Cannabinoide CB2/metabolismoRESUMEN
Numerous nutraceuticals and botanical food supplements are used with the intention of modulating body weight. A recent review examined the main food supplements used in weight loss, dividing them according to the main effects for which they were investigated. The direct or indirect effects exerted on the intestinal microbiota can also contribute to the effectiveness of these substances. The aim of this review is to evaluate whether any prebiotic effects, which could help to explain their efficacy or ineffectiveness, are documented in the recent literature for the main nutraceuticals and herbal food supplements used for weight loss management. Several prebiotic effects have been reported for various nutraceutical substances, which have shown activity on Bifidobacterium spp., Lactobacillus spp., Akkermansia muciniphila, Faecalibacterium prausnitzi, Roseburia spp., and the Firmicutes/Bacteroidetes ratio. Different prebiotics have beneficial effects on weight and the related metabolic profile, in some cases even acting on the microbiota with mechanisms that are completely independent from those nutraceuticals for which certain products are normally used. Further studies are necessary to clarify the different levels at which a nutraceutical substance can exert its action.
RESUMEN
BACKGROUND: Approaches based on expression signatures of prostate cancer (PCa) have been proposed to predict patient outcomes and response to treatments. The transcription factor NF-Y participates to the progression from benign epithelium to both localized and metastatic PCa and is associated with aggressive transcriptional profile. The gene encoding for NF-YA, the DNA-binding subunit of NF-Y, produces two alternatively spliced transcripts, NF-YAs and NF-YAl. Bioinformatic analyses pointed at NF-YA splicing as a key transcriptional signature to discriminate between different tumor molecular subtypes. In this study, we aimed to determine the pathophysiological role of NF-YA splice variants in PCa and their association with aggressive subtypes. METHODS: Data on the expression of NF-YA isoforms were extracted from the TCGA (The Cancer Genome Atlas) database of tumor prostate tissues and validated in prostate cell lines. Lentiviral transduction and CRISPR-Cas9 technology allowed the modulation of the expression of NF-YA splice variants in PCa cells. We characterized 3D cell cultures through in vitro assays and RNA-seq profilings. We used the rank-rank hypergeometric overlap approach to identify concordant/discordant gene expression signatures of NF-YAs/NF-YAl-overexpressing cells and human PCa patients. We performed in vivo studies in SHO-SCID mice to determine pathological and molecular phenotypes of NF-YAs/NF-YAl xenograft tumors. RESULTS: NF-YA depletion affects the tumorigenic potential of PCa cells in vitro and in vivo. Elevated NF-YAs levels are associated to aggressive PCa specimens, defined by Gleason Score and TNM classification. NF-YAl overexpression increases cell motility, while NF-YAs enhances cell proliferation in PCa 3D spheroids and xenograft tumors. The transcriptome of NF-YAs-spheroids has an extensive overlap with localized and metastatic human PCa signatures. According to PCa PAM50 classification, NF-YAs transcript levels are higher in LumB, characterized by poor prognosis compared to LumA and basal subtypes. A significant decrease in NF-YAs/NF-YAl ratio distinguishes PCa circulating tumor cells from cancer cells in metastatic sites, consistently with pro-migratory function of NF-YAl. Stratification of patients based on NF-YAs expression is predictive of clinical outcome. CONCLUSIONS: Altogether, our results indicate that the modulation of NF-YA isoforms affects prostate pathophysiological processes and contributes to cancer-relevant phenotype, in vitro and in vivo. Evaluation of NF-YA splicing may represent a new molecular strategy for risk assessment of PCa patients.
Asunto(s)
Empalme Alternativo/genética , Factor de Unión a CCAAT/metabolismo , Edición Génica/métodos , Neoplasias de la Próstata/genética , Animales , Humanos , Masculino , Ratones , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The transcription factor NF-Y promotes cell proliferation and its activity often declines during differentiation through the regulation of NF-YA, the DNA binding subunit of the complex. In stem cell compartments, the shorter NF-YA splice variant is abundantly expressed and sustains their expansion. Here, we report that satellite cells, the stem cell population of adult skeletal muscle necessary for its growth and regeneration, express uniquely the longer NF-YA isoform, majorly associated with cell differentiation. Through the generation of a conditional knock out mouse model that selectively deletes the NF-YA gene in satellite cells, we demonstrate that NF-YA expression is fundamental to preserve the pool of muscle stem cells and ensures robust regenerative response to muscle injury. In vivo and ex vivo, satellite cells that survive to NF-YA loss exit the quiescence and are rapidly committed to early differentiation, despite delayed in the progression towards later states. In vitro results demonstrate that NF-YA-depleted muscle stem cells accumulate DNA damage and cannot properly differentiate. These data highlight a new scenario in stem cell biology for NF-Y activity, which is required for efficient myogenic differentiation.
Asunto(s)
Factor de Unión a CCAAT/metabolismo , Músculo Esquelético/metabolismo , Regeneración/fisiología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Factor de Unión a CCAAT/genética , Diferenciación Celular/genética , Proliferación Celular , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Isoformas de Proteínas/genética , Regeneración/genéticaRESUMEN
Alternative splicing (AS) is a finely regulated mechanism for transcriptome and proteome diversification in eukaryotic cells. Correct balance between AS isoforms takes part in molecular mechanisms that properly define spatiotemporal and tissue specific transcriptional programs in physiological conditions. However, several diseases are associated to or even caused by AS alterations. In particular, multiple AS changes occur in cancer cells and sustain the oncogenic transcriptional program. Transcription factors (TFs) represent a key class of proteins that control gene expression by direct binding to DNA regulatory elements. AS events can generate cancer-associated TF isoforms with altered activity, leading to sustained proliferative signaling, differentiation block and apoptosis resistance, all well-known hallmarks of cancer. In this review, we focus on how AS can produce TFs isoforms with opposite transcriptional activities or antagonistic functions that severely impact on cancer biology. This summary points the attention to the relevance of the analysis of TFs splice variants in cancer, which can allow patients stratification despite the presence of interindividual genetic heterogeneity. Recurrent TFs variants that give advantage to specific cancer types not only open the opportunity to use AS transcripts as clinical biomarkers but also guide the development of new anti-cancer strategies in personalized medicine.
Asunto(s)
Empalme Alternativo/genética , Linaje de la Célula/genética , Neoplasias/genética , Neoplasias/patología , Factores de Transcripción/metabolismo , ADN/metabolismo , Humanos , Modelos BiológicosRESUMEN
Metastatic castration-resistant prostate cancer is commonly treated with chemotherapy, whose effect is less than satisfactory. This raised the need for novel agents for the treatment of prostate cancer. In the present study, five phthalimide-based curcumin derivatives were synthesized and completely characterized to assess improved stability, pharmacodynamics, and radical scavenging ability. To investigate the potential application in anti-cancer therapy, the anti-proliferative activity of the synthesized molecules was determined on aggressive prostate tumor cells. We demonstrated that the K3F21 derivative has increased potency compared to curcumin, in terms of GI50, anti-proliferative and anti-migrating activities. K3F21 inhibits anchorage-dependent and -independent growth of prostate cancer cells by altering the expression of key genes controlling cell proliferation, such as Cylins D1, B1 and B2, and apoptosis, among which Puma, Noxa, and Bcl-2 family members. Finally, the anti-cancer activity of K3F21 was demonstrated by the analysis of cancer-associated PI3K/AKT, ERK, and p38 signaling pathways.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Curcumina/química , Curcumina/farmacología , Ftalimidas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Estructura Molecular , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Epigenetic modifications of DNA and histone proteins are emerging as fundamental mechanisms by which neural cells adapt their transcriptional response to environmental cues, such as, immune stimuli or stress. In particular, histone H3 phospho(Ser10)-acetylation(Lys14) (H3S10phK14ac) has been linked to activation of specific gene expression. The purpose of this study was to investigate the role of H3S10phK14ac in a neuroinflammatory condition. Adult male rats received a intraperitoneal injection of lipopolysaccharide (LPS) (830⯵g/Kg/i.p., nâ¯=â¯6) or vehicle (saline 1â¯mL/kg/i.p., nâ¯=â¯6) and were sacrificed 2 or 6â¯h later. We showed marked region- and time-specific increases in H3S10phK14ac in the hypothalamus and hippocampus, two principal target regions of LPS. These changes were accompanied by a marked transcriptional activation of interleukin (IL) 1ß, IL-6, Tumour Necrosis Factor (TNF) α, the inducible nitric oxide synthase (iNOS) and the immediate early gene c-Fos. By means of chromatin immunoprecipitation, we demonstrated an increased region- and time-specific association of H3S10phK14ac with the promoters of IL-6, c-Fos and iNOS genes, suggesting that part of the LPS-induced transcriptional activation of these genes is regulated by H3S10phK14ac. Finally, by means of multiple immunofluorescence approach, we showed that increased H3S10phK14ac is cell type-specific, being neurons and reactive microglia, the principal histological types involved in this response. Present data point to H3S10phK14ac as a principal epigenetic regulator of neural cell response to systemic LPS and underline the importance of distinct time-, region- and cell-specific epigenetic mechanisms that regulate gene transcription to understand the mechanistic complexity of neuroinflammatory response to immune challenges.
Asunto(s)
Histonas/metabolismo , Neuroinmunomodulación/efectos de los fármacos , Acetilación/efectos de los fármacos , Animales , Encéfalo/metabolismo , Epigénesis Genética/fisiología , Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Hipotálamo/metabolismo , Lipopolisacáridos/farmacología , Masculino , Microglía/metabolismo , Microglía/fisiología , Neuroinmunomodulación/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Activación Transcripcional/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Several neurodegenerative diseases, like Alzheimer's (AD), are characterized by amyloid fibrillar deposition of misfolded proteins, and this feature can be exploited for both diagnosis and therapy design. In this paper, structural modifications of curcumin scaffold were examined in order to improve its bioavailability and stability in physiological conditions, as well as its ability to interfere with ß-amyloid fibrils and aggregates. The acid-base behaviour of curcumin derivatives, their pharmacokinetic stability in physiological conditions, and in vitro ability to interfere with Aß fibrils at different incubation time were investigated. The mechanisms governing these phenomena have been studied at atomic level by means of molecular docking and dynamic simulations. Finally, biological activity of selected curcuminoids has been investigated in vitro to evaluate their safety and efficiency in oxidative stress protection on hippocampal HT-22 mouse cells. Two aromatic rings, π-conjugated structure and H-donor/acceptor substituents on the aromatic rings showed to be the sine qua non structural features to provide interaction and disaggregation activity even at very low incubation time (2h). Computational simulations proved that upon binding the ligands modify the conformational dynamics and/or interact with the amyloidogenic region of the protofibril facilitating disaggregation. Significantly, in vitro results on hippocampal cells pointed out protection against glutamate toxicity and safety when administered at low concentrations (1⯵M). On the overall, in view of its higher stability in physiological conditions with respect to curcumin, of his rapid binding to fibrillar aggregates and strong depolymerizing activity, phtalimmide derivative K2F21 appeared a good candidate for both AD diagnostic and therapeutic purposes.
Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Curcumina/farmacología , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Curcumina/síntesis química , Curcumina/química , Relación Dosis-Respuesta a Droga , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-ActividadRESUMEN
The heterotrimeric NF-Y complex is a pioneer factor that binds to CCAAT-genes and regulates their transcription. NF-Y cooperates with multiple transcription factors and co-regulators in order to positively or negatively influence gene transcription. The recruitment of NF-Y to CCAAT box is significantly enriched in cancer-associated gene promoters loci and positively correlates with malignancy. NF-Y subunits, in particular the DNA-binding subunit NF-YA and the histone-fold subunit NF-YC, appear overexpressed in specific types of cancer. Here we demonstrate that NF-Y subunits expression is finely regulated through transcriptional and post-translational mechanisms thus allowing control over basal expression levels. NF-Y negatively regulates the transcription of the genes encoding for its subunits. DNA pull-down/affinity purification assay coupled with Mass Spectrometry identified putative co-regulators, such as Lamin A, involved in NF-YA gene transcription level. We also evidentiate how the stability of the complex is severely affected by the absence of one subunit. Our results identified for the first time one of the mechanisms responsible for NF-Y expression, which may be involved in the aberrant expression and activity observed in tumor cells and other pathological conditions.
Asunto(s)
Factor de Unión a CCAAT/genética , Lamina Tipo A/genética , Neoplasias/genética , Transcripción Genética , Regulación de la Expresión Génica , Células HCT116 , Humanos , Espectrometría de Masas , Neoplasias/patología , Regiones Promotoras Genéticas , Unión ProteicaRESUMEN
Progression of major depression, a multifactorial disorder with a neuroinflammatory signature, seems to be associated with the disruption of body allostasis. High rates of comorbidity between depression and specific medical disorders, such as, stroke, chronic pain conditions, diabetes mellitus, and human immunodeficiency virus (HIV) infection, have been extensively reported. In this review, we discuss how these medical disorders may predispose an individual to develop depression by examining the impact of these disorders on some hallmarks of neuroinflammation known to be impaired in depressed patients: altered permeability of the blood brain barrier, immune cells infiltration, activated microglia, increased cytokines production, and the role of inflammasomes. In all four pathologies, blood brain barrier integrity was altered, allowing the infiltration of peripheral factors, known to activate resident microglia. Evidence indicated morphological changes in the glial population, increased levels of circulating pro-inflammatory cytokines or increased production of these mediators within the brain, all fundamental in neuroinflammation, for the four medical disorders considered. Moreover, activity of the kynurenine pathway appeared to be enhanced. With respect to the inflammasome NLRP3, a new target whose role in neuroinflammation is emerging as being important, accumulating data suggest its involvement in the pathogenesis of brain injury following stroke, chronic pain conditions, diabetes mellitus or in HIV associated immune impairment. Finally, data gathered over the last 10 years, indicate and confirm that depression, stroke, chronic pain, diabetes, and HIV infection share a combination of underlying molecular, cellular and network mechanisms leading to a general increase in the neuroinflammatory burden for the individual.
Asunto(s)
Citocinas/metabolismo , Depresión , Encefalitis , Microglía/metabolismo , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/fisiopatología , Dolor Crónico/complicaciones , Bases de Datos Bibliográficas/estadística & datos numéricos , Depresión/etiología , Depresión/metabolismo , Depresión/patología , Diabetes Mellitus/fisiopatología , Encefalitis/etiología , Encefalitis/metabolismo , Encefalitis/patología , Infecciones por VIH/complicaciones , Humanos , Inflamasomas/metabolismo , Accidente Cerebrovascular/complicacionesRESUMEN
This paper describes the advantages of adopting a molluscan model for studying the biological basis of some central nervous system pathologies affecting humans. In particular, we will focus on the freshwater snail Lymnaea stagnalis, which is already the subject of electrophysiological studies related to learning and memory, as well as ecotoxicological studies. The genome of L. stagnalis has been sequenced and annotated but the gene characterization has not yet been performed. We consider the characterization of the gene networks that play crucial roles in development and functioning of the central nervous system in L. stagnalis, an important scientific development that comparative biologists should pursue. This important effort would add a new experimental model to the limited number of invertebrates already used in studies of translational medicine, the discipline that seeks to improve human health by taking advantage of knowledge collected at the molecular and cellular levels in non-human organisms.