RESUMEN
The widespread use of potent androgen receptor signaling inhibitors (ARSIs) has led to an increasing emergence of AR-independent castration-resistant prostate cancer (CRPC), typically driven by loss of AR expression, lineage plasticity, and transformation to prostate cancers (PCs) that exhibit phenotypes of neuroendocrine or basal-like cells. The anti-apoptotic protein BCL2 is upregulated in neuroendocrine cancers and may be a therapeutic target for this aggressive PC disease subset. There is an unmet clinical need, therefore, to clinically characterize BCL2 expression in metastatic CRPC (mCRPC), determine its association with AR expression, uncover its mechanisms of regulation, and evaluate BCL2 as a therapeutic target and/or biomarker with clinical utility. Here, using multiple PC biopsy cohorts and models, we demonstrate that BCL2 expression is enriched in AR-negative mCRPC, associating with shorter overall survival and resistance to ARSIs. Moreover, high BCL2 expression associates with lineage plasticity features and neuroendocrine marker positivity. We provide evidence that BCL2 expression is regulated by DNA methylation, associated with epithelial-mesenchymal transition, and increased by the neuronal transcription factor ASCL1. Finally, BCL2 inhibition had antitumor activity in some, but not all, BCL2-positive PC models, highlighting the need for combination strategies to enhance tumor cell apoptosis and enrich response.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata Resistentes a la Castración , Proteínas Proto-Oncogénicas c-bcl-2 , Masculino , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Animales , Línea Celular Tumoral , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Ratones , Metilación de ADN , Transición Epitelial-Mesenquimal , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/biosíntesisRESUMEN
BACKGROUND: Clinical trials have suggested antitumor activity from PARP inhibition beyond homologous recombination deficiency (HRD). RNASEH2B loss is unrelated to HRD and preclinically sensitizes to PARP inhibition. The current study reports on RNASEH2B protein loss in advanced prostate cancer and its association with RB1 protein loss, clinical outcome and clonal dynamics during treatment with PARP inhibition in a prospective clinical trial. METHODS: Whole tumor biopsies from multiple cohorts of patients with advanced prostate cancer were interrogated using whole-exome sequencing (WES), RNA sequencing (bulk and single nucleus) and immunohistochemistry (IHC) for RNASEH2B and RB1. Biopsies from patients treated with olaparib in the TOPARP-A and TOPARP-B clinical trials were used to evaluate RNASEH2B clonal selection during olaparib treatment. RESULTS: Shallow co-deletion of RNASEH2B and adjacent RB1, co-located at chromosome 13q14, was common, deep co-deletion infrequent, and gene loss associated with lower mRNA expression. In castration-resistant PC (CRPC) biopsies, RNASEH2B and RB1 mRNA expression correlated, but single nucleus RNA sequencing indicated discordant loss of expression. IHC studies showed that loss of the two proteins often occurred independently, arguably due to stochastic second allele loss. Pre- and post-treatment metastatic CRPC (mCRPC) biopsy studies from BRCA1/2 wildtype tumors, treated on the TOPARP phase II trial, indicated that olaparib eradicates RNASEH2B-loss tumor subclones. CONCLUSION: PARP inhibition may benefit men suffering from mCRPC by eradicating tumor subclones with RNASEH2B loss. CLINICALTRIALS: gov NCT01682772FUNDING. AstraZeneca; Cancer Research UK; Medical Research Council; Cancer Research UK; Prostate Cancer UK; Movember Foundation; Prostate Cancer Foundation.
RESUMEN
BACKGROUND: PTEN loss and aberrations in PI3K/AKT signaling kinases associate with poorer response to abiraterone acetate (AA) in metastatic castration-resistant prostate cancer (mCRPC). In this study, we assessed antitumor activity of the AKT inhibitor capivasertib combined with enzalutamide in mCRPC with prior progression on AA and docetaxel. METHODS: This double-blind, placebo-controlled, randomized phase 2 trial, recruited men ≥ 18 years with progressing mCRPC and performance status 0-2 from 15 UK centers. Randomized participants (1:1) received enzalutamide (160 mg orally, once daily) with capivasertib (400 mg)/ placebo orally, twice daily on an intermittent (4 days on, 3 days off) schedule. Primary endpoint was composite response rate (RR): RECIST 1.1 objective response, ≥ 50 % PSA decrease from baseline, or circulating tumor cell count conversion (from ≥ 5 at baseline to < 5 cells/7.5 mL). Subgroup analyses by PTENIHC status were pre-planned. RESULTS: Overall, 100 participants were randomized (50:50); 95 were evaluable for primary endpoint (47:48); median follow-up was 43 months. RR were 9/47 (19.1 %) enzalutamide/capivasertib and 9/48 (18.8 %) enzalutamide/placebo (absolute difference 0.4 % 90 %CI -12.8 to 13.6, p = 0.58), with similar results in the PTENIHC loss subgroup. Irrespective of treatment, OS was significantly worse for PTENIHC loss (10.1 months [95 %CI: 4.6-13.9] vs 14.8 months [95 %CI: 10.8-18]; p = 0.02). Most common treatment-emergent grade ≥ 3 adverse events for the combination were diarrhea (13 % vs 2 %) and fatigue (10 % vs 6 %). CONCLUSIONS: Combined capivasertib/enzalutamide was well tolerated but didn't significantly improve outcomes from abiraterone pre-treated mCRPC.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Benzamidas , Docetaxel , Nitrilos , Feniltiohidantoína , Neoplasias de la Próstata Resistentes a la Castración , Pirimidinas , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Feniltiohidantoína/administración & dosificación , Feniltiohidantoína/uso terapéutico , Feniltiohidantoína/efectos adversos , Docetaxel/administración & dosificación , Docetaxel/uso terapéutico , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Persona de Mediana Edad , Método Doble Ciego , Pirimidinas/uso terapéutico , Pirimidinas/administración & dosificación , Pirimidinas/efectos adversos , Androstenos/uso terapéutico , Androstenos/administración & dosificación , Anciano de 80 o más Años , PirrolesRESUMEN
Therapies that abrogate persistent androgen receptor (AR) signaling in castration-resistant prostate cancer (CRPC) remain an unmet clinical need. The N-terminal domain of the AR that drives transcriptional activity in CRPC remains a challenging therapeutic target. Herein we demonstrate that BCL-2-associated athanogene-1 (BAG-1) mRNA is highly expressed and associates with signaling pathways, including AR signaling, that are implicated in the development and progression of CRPC. In addition, interrogation of geometric and physiochemical properties of the BAG domain of BAG-1 isoforms identifies it to be a tractable but challenging drug target. Furthermore, through BAG-1 isoform mouse knockout studies, we confirm that BAG-1 isoforms regulate hormone physiology and that therapies targeting the BAG domain will be associated with limited "on-target" toxicity. Importantly, the postulated inhibitor of BAG-1 isoforms, Thio-2, suppressed AR signaling and other important pathways implicated in the development and progression of CRPC to reduce the growth of treatment-resistant prostate cancer cell lines and patient-derived models. However, the mechanism by which Thio-2 elicits the observed phenotype needs further elucidation as the genomic abrogation of BAG-1 isoforms was unable to recapitulate the Thio-2-mediated phenotype. Overall, these data support the interrogation of related compounds with improved drug-like properties as a novel therapeutic approach in CRPC, and further highlight the clinical potential of treatments that block persistent AR signaling which are currently undergoing clinical evaluation in CRPC.
Asunto(s)
Progresión de la Enfermedad , Neoplasias de la Próstata Resistentes a la Castración , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Inflammation is a hallmark of cancer1. In patients with cancer, peripheral blood myeloid expansion, indicated by a high neutrophil-to-lymphocyte ratio, associates with shorter survival and treatment resistance across malignancies and therapeutic modalities2-5. Whether myeloid inflammation drives progression of prostate cancer in humans remain unclear. Here we show that inhibition of myeloid chemotaxis can reduce tumour-elicited myeloid inflammation and reverse therapy resistance in a subset of patients with metastatic castration-resistant prostate cancer (CRPC). We show that a higher blood neutrophil-to-lymphocyte ratio reflects tumour myeloid infiltration and tumour expression of senescence-associated mRNA species, including those that encode myeloid-chemoattracting CXCR2 ligands. To determine whether myeloid cells fuel resistance to androgen receptor signalling inhibitors, and whether inhibiting CXCR2 to block myeloid chemotaxis reverses this, we conducted an investigator-initiated, proof-of-concept clinical trial of a CXCR2 inhibitor (AZD5069) plus enzalutamide in patients with metastatic CRPC that is resistant to androgen receptor signalling inhibitors. This combination was well tolerated without dose-limiting toxicity and it decreased circulating neutrophil levels, reduced intratumour CD11b+HLA-DRloCD15+CD14- myeloid cell infiltration and imparted durable clinical benefit with biochemical and radiological responses in a subset of patients with metastatic CRPC. This study provides clinical evidence that senescence-associated myeloid inflammation can fuel metastatic CRPC progression and resistance to androgen receptor blockade. Targeting myeloid chemotaxis merits broader evaluation in other cancers.
Asunto(s)
Antagonistas de Receptores Androgénicos , Antineoplásicos , Quimiotaxis , Resistencia a Antineoplásicos , Células Mieloides , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Quimiotaxis/efectos de los fármacos , Progresión de la Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/patología , Antígeno Lewis X/metabolismo , Células Mieloides/efectos de los fármacos , Células Mieloides/patología , Metástasis de la Neoplasia , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéuticoRESUMEN
PURPOSE: Approximately 10% to 15% of triple-negative breast cancers (TNBC) have deleterious mutations in BRCA1 and BRCA2 and may benefit from PARP inhibitor treatment. PARP inhibitors may also increase exogenous replication stress and thereby increase sensitivity to inhibitors of ataxia telangiectasia and Rad3-related (ATR) protein. This phase II study examined the activity of the combination of PARP inhibitor, olaparib, and ATR inhibitor, ceralasertib (AZD6738), in patients with advanced TNBC. PATIENTS AND METHODS: Patients with TNBC on most recent biopsy who had received 1 or 2 lines of chemotherapy for advanced disease or had relapsed within 12 months of (neo)adjuvant chemotherapy were eligible. Treatment was olaparib 300 mg twice a day continuously and celarasertib 160 mg on days 1-7 on a 28-day cycle until disease progression. The primary endpoint was confirmed objective response rate (ORR). Tissue and plasma biomarker analyses were preplanned to identify predictors of response. RESULTS: 70 evaluable patients were enrolled. Germline BRCA1/2 mutations were present in 10 (14%) patients and 3 (4%) patients had somatic BRCA mutations. The confirmed ORR was 12/70; 17.1% (95% confidence interval, 10.4-25.5). Responses were observed in patients without germline or somatic BRCA1/2 mutations, including patients with mutations in other homologous recombination repair genes and tumors with functional homologous recombination deficiency by RAD51 foci. CONCLUSIONS: The response rate to olaparib and ceralasertib did not meet prespecified criteria for activity in the overall evaluable population, but responses were observed in patients who would not be expected to respond to olaparib monotherapy.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteína BRCA1/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Proteína BRCA2/genética , Antineoplásicos/uso terapéutico , Ftalazinas/efectos adversosRESUMEN
BCL-2-associated athanogene-1L (BAG-1L) is a critical co-regulator that binds to and enhances the transactivation function of the androgen receptor, leading to prostate cancer development and progression. Studies investigating the clinical importance of BAG-1L protein expression in advanced prostate cancer have been limited by the paucity of antibodies that specifically recognize the long isoform. In this study, we developed and validated a new BAG-1L-specific antibody using multiple orthogonal methods across several cell lines with and without genomic manipulation of BAG-1L and all BAG-1 isoforms. Following this, we performed exploratory immunohistochemistry to determine BAG-1L protein expression in normal human, matched castration-sensitive prostate cancer (CSPC) and castration-resistant prostate cancer (CRPC), unmatched primary and metastatic CRPC, and early breast cancer tissues. We demonstrated higher BAG-1L protein expression in CRPC metastases than in unmatched, untreated, castration-sensitive prostatectomies from men who remained recurrence-free for 5 years. In contrast, BAG-1L protein expression did not change between matched, same patient, CSPC and CRPC biopsies, suggesting that BAG-1L protein expression may be associated with more aggressive biology and the development of castration resistance. Finally, in a cohort of patients who universally developed CRPC, there was no association between BAG-1L protein expression at diagnosis and time to CRPC or overall survival, and no association between BAG-1L protein expression at CRPC biopsy and clinical outcome from androgen receptor targeting therapies or docetaxel chemotherapy. The limitations of this study include the requirement to validate the reproducibility of the assay developed, the potential influence of pre-analytical factors, timing of CRPC biopsies, relatively small patient numbers, and heterogenous therapies on BAG-1L protein expression, and the clinical outcome analyses performed. We describe a new BAG-1L-specific antibody that the research community can further develop to elucidate the biological and clinical significance of BAG-1L protein expression in malignant and nonmalignant diseases.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Reproducibilidad de los Resultados , Factores de Transcripción , AnticuerposRESUMEN
Background: Germline mutations in the ataxia telangiectasia mutated (ATM) gene occur in 0.5-1% of the overall population and are associated with tumour predisposition. The clinical and pathological features of ATM-mutated prostate cancer (PC) are poorly defined but have been associated with lethal PC. Objective: To report on the clinical characteristics including family history and clinical outcomes of a cohort of patients with advanced metastatic castration-resistant PC (CRPC) who were found to have germline ATM mutations after mutation detection by initial tumour DNA sequencing. Design setting and participants: We acquired germline ATM mutation data by saliva next-generation sequencing from patients with ATM mutations in PC biopsies sequenced between January 2014 and January 2022. Demographics, family history, and clinical data were collected retrospectively. Outcome measurements and statistical analysis: Outcome endpoints were based on overall survival (OS) and time from diagnosis to CRPC. Data were analysed using R version 3.6.2 (R Foundation for Statistical Computing, Vienna, Austria). Results and limitations: Overall, seven patients (n = 7/1217; 0.6%) had germline ATM mutations detected, with five of them having a family history of malignancies, including breast, prostate, pancreas, and gastric cancer; leukaemia; and lymphoma. Two patients had concomitant somatic mutations in tumour biopsies in genes other than ATM, while two patients were found to carry more than one ATM pathogenic mutation. Five tumours in germline ATM variant carriers had loss of ATM by immunohistochemistry. The median OS from diagnosis was 7.1 yr (range 2.9-14 yr) and the median OS from CRPC was 5.3 yr (range 2.2-7.3 yr). When comparing these data with PC patients sequenced by The Cancer Genome Atlas, we found that the spatial localisation of mutations was similar, with distribution of alterations occurring on similar positions in the ATM gene. Interestingly, these include a mutation within the FRAP-ATM-TRRAP (FAT) domain, suggesting that this represents a mutational hotspot for ATM. Conclusions: Germline ATM mutations are rare in patients with lethal PC but occur at mutational hotspots; further research is warranted to better characterise the family histories of these men and PC clinical course. Patient summary: In this report, we studied the clinical and pathological features of advanced prostate cancers associated with germline mutations in the ATM gene. We found that most patients had a strong family history of cancer and that this mutation might predict the course of these prostate cancers, as well as response to specific treatments.
RESUMEN
Importance: Patients with platinum-resistant or refractory ovarian high-grade serous carcinoma (PR-HGSC) have a poor prognosis and few therapeutic options. Preclinical studies support targeting PI3K/AKT/mTOR signaling in this setting, and a phase 1 study of the dual mTORC1/mTORC2 inhibitor vistusertib with weekly paclitaxel showed activity. Objective: To evaluate whether the addition of vistusertib to weekly paclitaxel improves clinical outcomes in patients with PR-HGSC. Design, Setting, and Participants: This phase 2, double-blind, placebo-controlled multicenter randomized clinical trial recruited patients from UK cancer centers between January 2016 and March 2018. Patients with PR-HGSC of ovarian, fallopian tube, or primary peritoneal origin and with measurable or evaluable disease (Response Evaluation Criteria in Solid Tumors version 1.1 and/or Gynecological Cancer Intergroup cancer antigen 125 criteria) were eligible. There were no restrictions on number of lines of prior therapy. Data analysis was performed from May 2019 to January 2022. Interventions: Patients were randomized (1:1) to weekly paclitaxel (80 mg/m2 days 1, 8, and 15 of a 28-day cycle) plus oral vistusertib (50 mg twice daily) or placebo. Main Outcomes and Measures: The primary end point was progression-free survival in the intention-to-treat population. Secondary end points included response rate, overall survival, and quality of life. Results: A total of 140 patients (median [range] age, 63 [36-86] years; 17.9% with platinum-refractory disease; 53.6% with ≥3 prior therapies) were randomized. In the paclitaxel plus vistusertib vs paclitaxel plus placebo groups, there was no difference in progression-free survival (median, 4.5 vs 4.1 months; hazard ratio [HR], 0.84; 80% CI, 0.67-1.07; 1-sided P = .18), overall survival (median, 9.7 vs 11.1 months; HR, 1.21; 80% CI, 0.91-1.60) or response rate (odds ratio, 0.86; 80% CI, 0.55-1.36). Grade 3 to 4 adverse events were 41.2% (weekly paclitaxel plus vistusertib) vs 36.7% (weekly paclitaxel plus placebo), and there was no difference in quality of life. Conclusions and Relevance: In this randomized clinical trial of weekly paclitaxel and dual mTORC1/2 inhibition in patients with PR-HGSC, vistusertib did not improve clinical activity of weekly paclitaxel. Trial Registration: isrctn.org Identifier: ISRCTN16426935.
Asunto(s)
Neoplasias Ováricas , Paclitaxel , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/patología , Fosfatidilinositol 3-Quinasas/uso terapéutico , Calidad de Vida , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Diana Mecanicista del Complejo 1 de la Rapamicina , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversosRESUMEN
BACKGROUND: Elevated tissue factor (TF) expression, although restricted in normal tissue, has been reported in multiple solid cancers, and expression has been associated with poor prognosis. This manuscript compares TF expression across various solid tumor types via immunohistochemistry in a single study, which has not been performed previously. AIMS: To increase insight in the prevalence and cellular localization of TF expression across solid cancer types, we performed a detailed and systematic analysis of TF expression in tumor tissue obtained from patients with ovarian, esophageal, bladder, cervical, endometrial, pancreatic, prostate, colon, breast, non-small cell lung cancer (NSCLC), head and neck squamous cell carcinoma (HNSCC), and glioblastoma. The spatial and temporal variation of TF expression was analyzed over time and upon disease progression in patient-matched biopsies taken at different timepoints. In addition, TF expression in patient-matched primary tumor and metastatic lesions was also analyzed. METHODS AND RESULTS: TF expression was detected via immunohistochemistry (IHC) using a validated TF-specific antibody. TF was expressed in all cancer types tested, with highest prevalence in pancreatic cancer, cervical cancer, colon cancer, glioblastoma, HNSCC, and NSCLC, and lowest in breast cancer. Staining was predominantly membranous in pancreatic, cervical, and HNSCC, and cytoplasmic in glioblastoma and bladder cancer. In general, expression was consistent between biopsies obtained from the same patient over time, although variability was observed for individual patients. NSCLC biopsies of primary tumor and matched lymph node metastases showed no clear difference in TF expression overall, although individual patient changes were observed. CONCLUSION: This study shows that TF is expressed across a broad range of solid cancer types, and expression is present upon tumor dissemination and over the course of treatment.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Glioblastoma , Neoplasias de Cabeza y Cuello , Neoplasias Pulmonares , Masculino , Femenino , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Tromboplastina/análisis , Neoplasias Pulmonares/patologíaRESUMEN
BACKGROUND: B7-H3 is a cell surface immunomodulatory glycoprotein overexpressed in prostate cancers (PCs). Understanding its longitudinal expression at emergence of castration resistance and association with tumour genomics are critical to the development of and patient selection for B7-H3 targeted therapies. OBJECTIVE: To characterise B7-H3 expression in same-patient hormone-sensitive (HSPC) and castration-resistant (CRPC) PC biopsies, associating this with PC genomics, and to evaluate the antitumour activity of an anti-B7-H3 antibody-drug conjugate (ADC) in human CRPC in vitro and in vivo. DESIGN, SETTING, AND PARTICIPANTS: We performed immunohistochemistry and next-generation sequencing on a cohort of 98 clinically annotated CRPC biopsies, including 72 patients who also had HSPC biopsies for analyses. We analysed two CRPC transcriptome and exome datasets, and PC scRNASeq datasets. PC organoids (patient-derived xenograft [PDX]-derived organoids [PDX-Os]) were derived from PDXs generated from human CRPC biopsies. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We evaluated B7-H3 mRNA expression in relation to a panel of 770 immune-related genes, compared B7-H3 protein expression between same-patient HSPC and CRPC biopsies, determined associations with PC genomic alterations, and evaluated the antitumour activity of DS-7300a, a topoisomerase-1 inhibitor payload anti-B7-H3 ADC, in human PC cell lines, organoids (PDX-Os), and xenografts (PDXs) of different histologies, B7-H3 expressions, and genomics. RESULTS AND LIMITATIONS: B7-H3 was among the most highly expressed immunomodulatory genes in CRPCs. Most CRPCs (93%) expressed B7-H3, and in patients who developed CRPC, B7-H3 expression was frequently expressed at the time of HSPC diagnosis (97%). Conversion from B7-H3 positive to negative, or vice versa, during progression from HSPC to CRPC was uncommon. CRPC with neuroendocrine features were more likely to be B7-H3 negative (28%) than adenocarcinomas. B7-H3 is overexpressed in tumours with defective DNA repair gene (ATM and BRCA2) alterations and is associated with ERG expression, androgen receptor (AR) expression, and AR activity signature. DS7300a had antitumour activity against B7-H3 expressing human PC models including cell lines, PDX-Os, and PDXs of adenocarcinoma and neuroendocrine histology. CONCLUSIONS: The frequent overexpression of B7-H3 in CRPC compared with normal tissue and other B7 family members implicates it as a highly relevant therapeutic target in these diseases. Mechanisms driving differences in B7-H3 expression across genomic subsets warrant investigation for understanding the role of B7-H3 in cancer growth and for the clinical development of B7-H3 targeted therapies. PATIENT SUMMARY: B7-H3, a protein expressed on the surface of the most lethal prostate cancers, in particular those with specific mutations, can be targeted using drugs that bind B7-H3. These findings are relevant for the development of such drugs and for deciding which patients to treat with these new drugs.
Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética , Antineoplásicos/uso terapéutico , Transducción de Señal , Biopsia , Factores de Transcripción/genética , Transcriptoma , Adenocarcinoma/tratamiento farmacológico , Línea Celular TumoralRESUMEN
Gastric cancer represents the third leading cause of global cancer mortality and an area of unmet clinical need. Drugs that target the DNA damage response, including ATR inhibitors (ATRi), have been proposed as novel targeted agents in gastric cancer. Here, we sought to evaluate the efficacy of ATRi in preclinical models of gastric cancer and to understand how ATRi resistance might emerge as a means to identify predictors of ATRi response. A positive selection genome-wide CRISPR-Cas9 screen identified candidate regulators of ATRi resistance in gastric cancer. Loss-of-function mutations in either SMG8 or SMG9 caused ATRi resistance by an SMG1-mediated mechanism. Although ATRi still impaired ATR/CHK1 signaling in SMG8/9-defective cells, other characteristic responses to ATRi exposure were not seen, such as changes in ATM/CHK2, γH2AX, phospho-RPA, or 53BP1 status or changes in the proportions of cells in S- or G2-M-phases of the cell cycle. Transcription/replication conflicts (TRC) elicited by ATRi exposure are a likely cause of ATRi sensitivity, and SMG8/9-defective cells exhibited a reduced level of ATRi-induced TRCs, which could contribute to ATRi resistance. These observations suggest ATRi elicits antitumor efficacy in gastric cancer but that drug resistance could emerge via alterations in the SMG8/9/1 pathway. SIGNIFICANCE: These findings reveal how cancer cells acquire resistance to ATRi and identify pathways that could be targeted to enhance the overall effectiveness of these inhibitors.
Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Humanos , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Péptidos y Proteínas de Señalización Intracelular/metabolismoRESUMEN
PURPOSE: CT900 is a novel small molecule thymidylate synthase inhibitor that binds to α-folate receptor (α-FR) and thus is selectively taken up by α-FR-overexpressing tumors. PATIENTS AND METHODS: A 3+3 dose escalation design was used. During dose escalation, CT900 doses of 1-6 mg/m2 weekly and 2-12 mg/m2 every 2 weeks (q2Wk) intravenously were evaluated. Patients with high-grade serous ovarian cancer were enrolled in the expansion cohorts. RESULTS: 109 patients were enrolled: 42 patients in the dose escalation and 67 patients in the expansion cohorts. At the dose/schedule of 12 mg/m2/q2Wk (with and without dexamethasone, n = 40), the most common treatment-related adverse events were fatigue, nausea, diarrhea, cough, anemia, and pneumonitis, which were predominantly grade 1 and grade 2. Levels of CT900 more than 600 nmol/L needed for growth inhibition in preclinical models were achieved for >65 hours at a dose of 12 mg/m2. In the expansion cohorts, the overall response rate (ORR), was 14/64 (21.9%). Thirty-eight response-evaluable patients in the expansion cohorts receiving 12 mg/m2/q2Wk had tumor evaluable for quantification of α-FR. Patients with high or medium expression had an objective response rate of 9/25 (36%) compared with 1/13 (7.7%) in patients with negative/very low or low expression of α-FR. CONCLUSIONS: The dose of 12 mg/m2/q2Wk was declared the recommended phase II dose/schedule. At this dose/schedule, CT900 exhibited an acceptable side effect profile with clinical benefit in patients with high/medium α-FR expression and warrants further investigation.
Asunto(s)
Neoplasias , Neoplasias Ováricas , Humanos , Femenino , Timidilato Sintasa/genética , Dosis Máxima Tolerada , Neoplasias/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ácido FólicoRESUMEN
BACKGROUND: Data suggest that immunomodulation induced by DNA hypomethylating agents can sensitize tumors to immune checkpoint inhibitors. We conducted a phase 1 dose-escalation trial (NCT02998567) of guadecitabine and pembrolizumab in patients with advanced solid tumors. We hypothesized that guadecitabine will overcome pembrolizumab resistance. METHODS: Patients received guadecitabine (45 mg/m2 or 30 mg/m2, administered subcutaneously on days 1-4), with pembrolizumab (200 mg administered intravenously starting from cycle 2 onwards) every 3 weeks. Primary endpoints were safety, tolerability and maximum tolerated dose; secondary and exploratory endpoints included objective response rate (ORR), changes in methylome, transcriptome, immune contextures in pre-treatment and on-treatment tumor biopsies. RESULTS: Between January 2017 and January 2020, 34 patients were enrolled. The recommended phase II dose was guadecitabine 30 mg/m2, days 1-4, and pembrolizumab 200 mg on day 1 every 3 weeks. Two dose-limiting toxicities (neutropenia, febrile neutropenia) were reported at guadecitabine 45 mg/m2 with none reported at guadecitabine 30 mg/m2. The most common treatment-related adverse events (TRAEs) were neutropenia (58.8%), fatigue (17.6%), febrile neutropenia (11.8%) and nausea (11.8%). Common, grade 3+ TRAEs were neutropaenia (38.2%) and febrile neutropaenia (11.8%). There were no treatment-related deaths. Overall, 30 patients were evaluable for antitumor activity; ORR was 7% with 37% achieving disease control (progression-free survival) for ≥24 weeks. Of 12 evaluable patients with non-small cell lung cancer, 10 had been previously treated with immune checkpoint inhibitors with 5 (42%) having disease control ≥24 weeks (clinical benefit). Reduction in LINE-1 DNA methylation following treatment in blood (peripheral blood mononuclear cells) and tissue samples was demonstrated and methylation at transcriptional start site and 5' untranslated region gene regions showed enriched negative correlation with gene expression. Increases in intra-tumoural effector T-cells were seen in some responding patients. Patients having clinical benefit had high baseline inflammatory signature on RNAseq analyses. CONCLUSIONS: Guadecitabine in combination with pembrolizumab is tolerable with biological and anticancer activity. Reversal of previous resistance to immune checkpoint inhibitors is demonstrated.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias , Anticuerpos Monoclonales Humanizados/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Azacitidina/análogos & derivados , Azacitidina/uso terapéutico , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias/tratamiento farmacológicoRESUMEN
PURPOSE: Therapies targeting the androgen receptor (AR) have improved the outcome for patients with castration-sensitive prostate cancer (CSPC). Expression of the constitutively active AR splice variant-7 (AR-V7) has shown clinical utility as a predictive biomarker of AR-targeted therapy resistance in castration-resistant prostate cancer (CRPC), but its importance in CSPC remains understudied. EXPERIMENTAL DESIGN: We assessed different approaches to quantify AR-V7 mRNA and protein in prostate cancer cell lines, patient-derived xenograft (PDX) models, publicly available cohorts, and independent institutional clinical cohorts, to identify reliable approaches for detecting AR-V7 mRNA and protein and its association with clinical outcome. RESULTS: In CSPC and CRPC cohorts, AR-V7 mRNA was much less abundant when detected using reads across splice boundaries than when considering isoform-specific exonic reads. The RM7 AR-V7 antibody had increased sensitivity and specificity for AR-V7 protein detection by immunohistochemistry (IHC) in CRPC cohorts but rarely identified AR-V7 protein reactivity in CSPC cohorts, when compared with the EPR15656 AR-V7 antibody. Using multiple CRPC PDX models, we demonstrated that AR-V7 expression was exquisitely sensitive to hormonal manipulation. In CSPC institutional cohorts, AR-V7 protein quantification by either assay was associated neither with time to development of castration resistance nor with overall survival, and intense neoadjuvant androgen-deprivation therapy did not lead to significant AR-V7 mRNA or staining following treatment. Neither pre- nor posttreatment AR-V7 levels were associated with volumes of residual disease after therapy. CONCLUSIONS: This study demonstrates that further analytical validation and clinical qualification are required before AR-V7 can be considered for clinical use in CSPC as a predictive biomarker.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Antagonistas de Andrógenos/uso terapéutico , Biomarcadores , Castración , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismoRESUMEN
PURPOSE: Prostate-specific membrane antigen (PSMA) targeting therapies such as Lutetium-177 (177Lu)-PSMA-617 are affecting outcomes from metastatic castration-resistant prostate cancer (mCRPC). However, a significant subset of patients have prostate cancer cells lacking PSMA expression, raising concerns about treatment resistance attributable at least in part to heterogeneous PSMA expression. We have previously demonstrated an association between high PSMA expression and DNA damage repair defects in mCRPC biopsies and therefore hypothesized that DNA damage upregulates PSMA expression. EXPERIMENTAL DESIGN: To test this relationship between PSMA and DNA damage we conducted a screen of 147 anticancer agents (NCI/NIH FDA-approved anticancer "Oncology Set") and treated tumor cells with repeated ionizing irradiation. RESULTS: The topoisomerase-2 inhibitors, daunorubicin and mitoxantrone, were identified from the screen to upregulate PSMA protein expression in castration-resistant LNCaP95 cells; this result was validated in vitro in LNCaP, LNCaP95, and 22Rv1 cell lines and in vivo using an mCRPC patient-derived xenograft model CP286 identified to have heterogeneous PSMA expression. As double-strand DNA break induction by topoisomerase-2 inhibitors upregulated PSMA, we next studied the impact of ionizing radiation on PSMA expression; this also upregulated PSMA protein expression in a dose-dependent fashion. CONCLUSIONS: The results presented herein are the first, to our knowledge, to demonstrate that PSMA is upregulated in response to double-strand DNA damage by anticancer treatment. These data support the study of rational combinations that maximize the antitumor activity of PSMA-targeted therapeutic strategies by upregulating PSMA.
Asunto(s)
Antígenos de Superficie , Antineoplásicos , Daño del ADN , Glutamato Carboxipeptidasa II , Neoplasias de la Próstata Resistentes a la Castración , Animales , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Glutamato Carboxipeptidasa II/genética , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Masculino , Ratones , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Resultado del Tratamiento , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease in which molecular stratification is needed to improve clinical outcomes. The identification of predictive biomarkers can have a major impact on the care of these patients, but the availability of metastatic tissue samples for research in this setting is limited. OBJECTIVE: To study the prevalence of immune biomarkers of potential clinical utility to immunotherapy in mCRPC and to determine their association with overall survival (OS). DESIGN, SETTING, AND PARTICIPANTS: From 100 patients, mCRPC biopsies were assayed by whole exome sequencing, targeted next-generation sequencing, RNA sequencing, tumor mutational burden, T-cell-inflamed gene expression profile (TcellinfGEP) score (Nanostring), and immunohistochemistry for programmed cell death 1 ligand 1 (PD-L1), ataxia-telangiectasia mutated (ATM), phosphatase and tensin homolog (PTEN), SRY homology box 2 (SOX2), and the presence of neuroendocrine features. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The phi coefficient determined correlations between biomarkers of interest. OS was assessed using Kaplan-Meier curves and adjusted hazard ratios (aHRs) from Cox regression. RESULTS AND LIMITATIONS: PD-L1 and SOX2 protein expression was detected by immunohistochemistry (combined positive score ≥1 and >5% cells, respectively) in 24 (33%) and 27 (27%) mCRPC biopsies, respectively; 23 (26%) mCRPC biopsies had high TcellinfGEP scores (>-0.318). PD-L1 protein expression and TcellinfGEP scores were positively correlated (phi 0.63 [0.45; 0.76]). PD-L1 protein expression (aHR: 1.90 [1.05; 3.45]), high TcellinfGEP score (aHR: 1.86 [1.04; 3.31]), and SOX2 expression (aHR: 2.09 [1.20; 3.64]) were associated with worse OS. CONCLUSIONS: PD-L1, TcellinfGEP score, and SOX2 are prognostic of outcome from the mCRPC setting. If validated, predictive biomarker studies incorporating survival endpoints need to take these findings into consideration. PATIENT SUMMARY: This study presents an analysis of immune biomarkers in biopsies from patients with metastatic prostate cancer. We describe tumor alterations that predict prognosis that can impact future studies.
Asunto(s)
Antígeno B7-H1 , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Biomarcadores de Tumor/genética , PronósticoRESUMEN
It has been recognized for decades that ERBB signaling is important in prostate cancer, but targeting ERBB receptors as a therapeutic strategy for prostate cancer has been ineffective clinically. However, we show here that membranous HER3 protein is commonly highly expressed in lethal prostate cancer, associating with reduced time to castration resistance (CR) and survival. Multiplex immunofluorescence indicated that the HER3 ligand NRG1 is detectable primarily in tumor-infiltrating myelomonocytic cells in human prostate cancer; this observation was confirmed using single-cell RNA sequencing of human prostate cancer biopsies and murine transgenic prostate cancer models. In castration-resistant prostate cancer (CRPC) patient-derived xenograft organoids with high HER3 expression as well as mouse prostate cancer organoids, recombinant NRG1 enhanced proliferation and survival. Supernatant from murine bone marrow-derived macrophages and myeloid-derived suppressor cells promoted murine prostate cancer organoid growth in vitro, which could be reversed by a neutralizing anti-NRG1 antibody and ERBB inhibition. Targeting HER3, especially with the HER3-directed antibody-drug conjugate U3-1402, exhibited antitumor activity against HER3-expressing prostate cancer. Overall, these data indicate that HER3 is commonly overexpressed in lethal prostate cancer and can be activated by NRG1 secreted by myelomonocytic cells in the tumor microenvironment, supporting HER3-targeted therapeutic strategies for treating HER3-expressing advanced CRPC. SIGNIFICANCE: HER3 is an actionable target in prostate cancer, especially with anti-HER3 immunoconjugates, and targeting HER3 warrants clinical evaluation in prospective trials.