Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Dev Dyn ; 252(10): 1269-1279, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37171017

RESUMEN

BACKGROUND: The vertebrate inner ear contains distinct sensory epithelia specialized for auditory or vestibular function. In zebrafish, the first sensory epithelia form at opposite ends of the otic vesicle and are functionally distinct: the anterior utricular macula is essential for vestibular function whereas the posterior saccular macula is critical for hearing. Mechanisms distinguishing these maculae are not clear. Here, we examined the effects of manipulating Fgf or Hh on expression of pax5 and pou3f3b, unique markers of utricular and saccular identity. We also examined the roles of pax2a and atoh1a/b, early regulators of sensory specification. RESULTS: fgf3 and fgf8a were uniquely required for pax5 and pou3f3b, respectively. Elevating Fgf or blocking Hh expanded expression of pax5 but repressed pou3f3b, while blocking Fgf had the opposite effect. Blocking sensory specification did not affect pax5 or pou3f3b, but both markers were lost in pax2a-/- mutants. Maintenance of pax2a expression requires Fgf, Hh and Pax2a itself. CONCLUSION: Specification of utricular identity requires high Fgf and is repressed by Hh, whereas saccular identity requires Hh plus low Fgf. pax2a acts downstream of Fgf and Hh to maintain both fates. Comparison with mouse suggests this may reflect a broadly conserved developmental mechanism.


Asunto(s)
Oído Interno , Pez Cebra , Animales , Ratones , Oído Interno/metabolismo , Audición , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Factor 1 de Crecimiento de Fibroblastos , Proteínas Hedgehog , Factores de Crecimiento de Fibroblastos
2.
Dev Biol ; 492: 139-153, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36244503

RESUMEN

In zebrafish, sensory epithelia and neuroblasts of the inner ear form simultaneously in abutting medial and lateral domains, respectively, in the floor of the otic vesicle. Previous studies support regulatory roles for Fgf and Wnt, but how signaling is coordinated is poorly understood. We investigated this problem using pharmacological and transgenic methods to alter Fgf or Wnt signaling from early placodal stages to evaluate later changes in growth and patterning. Blocking Fgf at any stage reduces proliferation of otic tissue and terminates both sensory and neural specification. Wnt promotes proliferation in the otic vesicle but is not required for sensory or neural development. However, sustained overactivation of Wnt laterally expands sensory epithelia and blocks neurogenesis. pax2a, sp5a and sp5l are coregulated by Fgf and Wnt and show overlapping expression in the otic placode and vesicle. Gain- and loss-of-function studies show that these genes are together required for Wnt's suppression of neurogenesis, as well as some aspects of sensory development. Thus, pax2a, sp5a and sp5l are critical for mediating Fgf and Wnt signaling to promote spatially localized sensory and neural development.


Asunto(s)
Oído Interno , Pez Cebra , Animales , Pez Cebra/genética , Regulación del Desarrollo de la Expresión Génica , Factores de Crecimiento de Fibroblastos/metabolismo , Oído Interno/metabolismo , Vía de Señalización Wnt , Proteínas de Pez Cebra/genética , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo
3.
Dev Dyn ; 250(11): 1524-1551, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33830554

RESUMEN

Progress in understanding mechanisms of inner ear development has been remarkably rapid in recent years. The research community has benefited from the availability of several diverse model organisms, including zebrafish, chick, and mouse. The complexity of the inner ear has proven to be a challenge, and the complexity of the mammalian cochlea in particular has been the subject of intense scrutiny. Zebrafish lack a cochlea and exhibit a number of other differences from amniote species, hence they are sometimes seen as less relevant for inner ear studies. However, accumulating evidence shows that underlying cellular and molecular mechanisms are often highly conserved. As a case in point, consideration of the diverse functions of Fgf and its downstream effectors reveals many similarities between vertebrate species, allowing meaningful comparisons the can benefit the entire research community. In this review, I will discuss mechanisms by which Fgf controls key events in early otic development in zebrafish and provide direct comparisons with chick and mouse.


Asunto(s)
Oído Interno , Modelos Animales , Pez Cebra , Animales , Oído Interno/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mamíferos/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
4.
Elife ; 92020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32338604

RESUMEN

Recent studies indicate that many developing tissues modify glycolysis to favor lactate synthesis (Agathocleous et al., 2012; Bulusu et al., 2017; Gu et al., 2016; Oginuma et al., 2017; Sá et al., 2017; Wang et al., 2014; Zheng et al., 2016), but how this promotes development is unclear. Using forward and reverse genetics in zebrafish, we show that disrupting the glycolytic gene phosphoglycerate kinase-1 (pgk1) impairs Fgf-dependent development of hair cells and neurons in the otic vesicle and other neurons in the CNS/PNS. Fgf-MAPK signaling underperforms in pgk1- / - mutants even when Fgf is transiently overexpressed. Wild-type embryos treated with drugs that block synthesis or secretion of lactate mimic the pgk1- / - phenotype, whereas pgk1- / - mutants are rescued by treatment with exogenous lactate. Lactate treatment of wild-type embryos elevates expression of Etv5b/Erm even when Fgf signaling is blocked. However, lactate's ability to stimulate neurogenesis is reversed by blocking MAPK. Thus, lactate raises basal levels of MAPK and Etv5b (a critical effector of the Fgf pathway), rendering cells more responsive to dynamic changes in Fgf signaling required by many developing tissues.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Ácido Láctico/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neurogénesis/efectos de los fármacos , Proteínas de Pez Cebra/genética , Pez Cebra/fisiología , Animales , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/fisiología , Desarrollo Embrionario/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Células Ciliadas Auditivas/fisiología , Ácido Láctico/farmacología , Neuronas/fisiología , Fosfoglicerato Quinasa/genética , Receptores de Factores de Crecimiento de Fibroblastos , Genética Inversa , Transducción de Señal , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Dev Biol ; 435(1): 84-95, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29355522

RESUMEN

Expression of sox3 is one of the earliest markers of Fgf-dependent otic/epibranchial placode induction. We report here that sox2 is also expressed in the early otic/epibranchial placode in zebrafish. To address functions of sox2 and sox3, we generated knockouts and heat shock-inducible transgenes. Mutant analysis, and low-level misexpression, showed that sox2 and sox3 act redundantly to establish a full complement of otic/epibranchial cells. Disruption of pax8, another early regulator, caused similar placodal deficiencies to sox3 mutants or pax8-sox3 double mutants, suggesting that sox3 and pax8 operate in the same pathway. High-level misexpression of sox2 or sox3 during early stages cell-autonomously blocked placode induction, whereas misexpression several hours later could not reverse placodal differentiation. In an assay for ectopic placode-induction, we previously showed that misexpression of fgf8 induces a high level of ectopic sox3, but not pax8. Partial knockdown of sox3 significantly enhanced ectopic induction of pax8, whereas full knockdown of sox3 inhibited this process. Together these findings show that sox2 and sox3 are together required for proper otic induction, but the level of expression must be tightly regulated to avoid suppression of differentiation and maintenance of pluripotency.


Asunto(s)
Oído Interno/embriología , Mutación , Organogénesis/fisiología , Factores de Transcripción SOX/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Factor de Transcripción PAX8/genética , Factor de Transcripción PAX8/metabolismo , Factores de Transcripción SOX/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
6.
Dev Biol ; 435(1): 73-83, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29355523

RESUMEN

Formation of neural and sensory progenitors in the inner ear requires Sox2 in mammals, and in other species is thought to rely on both Sox2 and Sox3. How Sox2 and/or Sox3 promote different fates is poorly understood. Our mutant analysis in zebrafish showed that sox2 is uniquely required for sensory development while sox3 is uniquely required for neurogenesis. Moderate misexpression of sox2 during placodal stages led to development of otic vesicles with expanded sensory and reduced neurogenic domains. However, high-level misexpression of sox2 or sox3 expanded both sensory and neurogenic domains to fill the medial and lateral halves of the otic vesicle, respectively. Disruption of medial factor pax2a eliminated the ability of sox2/3 misexpression to expand sensory but not neurogenic domains. Additionally, mild misexpression of fgf8 during placodal development was sufficient to specifically expand the zone of prosensory competence. Later, cross-repression between atoh1a and neurog1 helps maintain the sensory-neural boundary, but unlike mouse this does not require Notch activity. Together, these data show that sox2 and sox3 exhibit intrinsic differences in promoting sensory vs. neural competence, but at high levels these factors can mimic each other to enhance both states. Regional cofactors like pax2a and fgf8 also modify sox2/3 functions.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Células Ciliadas Auditivas Internas/metabolismo , Neurogénesis/fisiología , Factores de Transcripción SOX/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/embriología , Animales , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Células Ciliadas Auditivas Internas/citología , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Factores de Transcripción SOX/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(44): E6840-E6848, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791112

RESUMEN

Neurons of the Statoacoustic Ganglion (SAG), which innervate the inner ear, originate as neuroblasts in the floor of the otic vesicle and subsequently delaminate and migrate toward the hindbrain before completing differentiation. In all vertebrates, locally expressed Fgf initiates SAG development by inducing expression of Neurogenin1 (Ngn1) in the floor of the otic vesicle. However, not all Ngn1-positive cells undergo delamination, nor has the mechanism controlling SAG delamination been elucidated. Here we report that Goosecoid (Gsc), best known for regulating cellular dynamics in the Spemann organizer, regulates delamination of neuroblasts in the otic vesicle. In zebrafish, Fgf coregulates expression of Gsc and Ngn1 in partially overlapping domains, with delamination occurring primarily in the zone of overlap. Loss of Gsc severely inhibits delamination, whereas overexpression of Gsc greatly increases delamination. Comisexpression of Ngn1 and Gsc induces ectopic delamination of some cells from the medial wall of the otic vesicle but with a low incidence, suggesting the action of a local inhibitor. The medial marker Pax2a is required to restrict the domain of gsc expression, and misexpression of Pax2a is sufficient to block delamination and fully suppress the effects of Gsc The opposing activities of Gsc and Pax2a correlate with repression or up-regulation, respectively, of E-cadherin (cdh1). These data resolve a genetic mechanism controlling delamination of otic neuroblasts. The data also elucidate a developmental role for Gsc consistent with a general function in promoting epithelial-to-mesenchymal transition (EMT).


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ganglios Parasimpáticos/crecimiento & desarrollo , Ganglios Parasimpáticos/metabolismo , Proteína Goosecoide/genética , Proteína Goosecoide/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Organizadores Embrionarios , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Cadherinas/metabolismo , Diferenciación Celular/genética , Oído Interno/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Ganglios Parasimpáticos/patología , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Genes Sobrepuestos , Inmunohistoquímica , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neurogénesis/genética , Organizadores Embrionarios/patología , Factor de Transcripción PAX2/metabolismo , Transducción de Señal , Regulación hacia Arriba , Nervio Vestibulococlear/crecimiento & desarrollo , Nervio Vestibulococlear/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
8.
PLoS Genet ; 11(3): e1005037, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25781991

RESUMEN

Neurons of the statoacoustic ganglion (SAG) transmit auditory and vestibular information from the inner ear to the hindbrain. SAG neuroblasts originate in the floor of the otic vesicle. New neuroblasts soon delaminate and migrate towards the hindbrain while continuing to proliferate, a phase known as transit amplification. SAG cells eventually come to rest between the ear and hindbrain before terminally differentiating. Regulation of these events is only partially understood. Fgf initiates neuroblast specification within the ear. Subsequently, Fgf secreted by mature SAG neurons exceeds a maximum threshold, serving to terminate specification and delay maturation of transit-amplifying cells. Notch signaling also limits SAG development, but how it is coordinated with Fgf is unknown. Here we show that transcription factor Tfap2a coordinates multiple signaling pathways to promote neurogenesis in the zebrafish inner ear. In both zebrafish and chick, Tfap2a is expressed in a ventrolateral domain of the otic vesicle that includes neurogenic precursors. Functional studies were conducted in zebrafish. Loss of Tfap2a elevated Fgf and Notch signaling, thereby inhibiting SAG specification and slowing maturation of transit-amplifying cells. Conversely, overexpression of Tfap2a inhibited Fgf and Notch signaling, leading to excess and accelerated SAG production. However, most SAG neurons produced by Tfap2a overexpression died soon after maturation. Directly blocking either Fgf or Notch caused less dramatic acceleration of SAG development without neuronal death, whereas blocking both pathways mimicked all observed effects of Tfap2a overexpression, including apoptosis of mature neurons. Analysis of genetic mosaics showed that Tfap2a acts non-autonomously to inhibit Fgf. This led to the discovery that Tfap2a activates expression of Bmp7a, which in turn inhibits both Fgf and Notch signaling. Blocking Bmp signaling reversed the effects of overexpressing Tfap2a. Together, these data support a model in which Tfap2a, acting through Bmp7a, modulates Fgf and Notch signaling to control the duration, amount and speed of SAG neural development.


Asunto(s)
Proteína Morfogenética Ósea 7/genética , Ganglión/genética , Neurogénesis/genética , Factor de Transcripción AP-2/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética , Animales , Proteína Morfogenética Ósea 7/biosíntesis , Diferenciación Celular/genética , Pollos , Oído Interno/crecimiento & desarrollo , Oído Interno/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Ganglión/embriología , Regulación del Desarrollo de la Expresión Génica , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética , Factor de Transcripción AP-2/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
9.
Dev Biol ; 390(1): 1-13, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24650709

RESUMEN

The bones of the vertebrate face develop from transient embryonic branchial arches that are populated by cranial neural crest cells. We have characterized a mouse mutant for the Forkhead family transcription factor Foxi3, which is expressed in branchial ectoderm and endoderm. Foxi3 mutant mice are not viable and display severe branchial arch-derived facial skeleton defects, including absence of all but the most distal tip of the mandible and complete absence of the inner, middle and external ear structures. Although cranial neural crest cells of Foxi3 mutants are able to migrate, populate the branchial arches, and display some elements of correct proximo-distal patterning, they succumb to apoptosis from embryonic day 9.75 onwards. We show this cell death correlates with a delay in expression of Fgf8 in branchial arch ectoderm and a failure of neural crest cells in the arches to express FGF-responsive genes. Zebrafish foxi1 is also expressed in branchial arch ectoderm and endoderm, and morpholino knock-down of foxi1 also causes apoptosis of neural crest in the branchial arches. We show that heat shock induction of fgf3 in zebrafish arch tissue can rescue cell death in foxi1 morphants. Our results suggest that Foxi3 may play a role in the establishment of signaling centers in the branchial arches that are required for neural crest survival, patterning and the subsequent development of branchial arch derivatives.


Asunto(s)
Región Branquial/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Transcripción Forkhead/genética , Transducción de Señal/genética , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Tipificación del Cuerpo/genética , Región Branquial/embriología , Movimiento Celular/genética , Ectodermo/citología , Ectodermo/embriología , Ectodermo/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Factor 3 de Crecimiento de Fibroblastos/genética , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hibridación in Situ , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
10.
Dev Dyn ; 243(10): 1275-85, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24677486

RESUMEN

BACKGROUND: Vertebrate otic and epibranchial placodes develop in close proximity in response to localized fibroblast growth factor (Fgf) signaling. Although less is known about epibranchial induction, the process of otic induction in highly conserved, with important roles for Fgf3 and Fgf8 reported in all species examined. Fgf10 is also critical for otic induction in mouse, but the only zebrafish ortholog examined to date, fgf10a, is not expressed early enough to play such a role. A second zebrafish ortholog, fgf10b, has not been previously examined. RESULTS: We find that zebrafish fgf10b is expressed at tailbud stage in paraxial cephalic mesoderm beneath prospective epibranchial tissue, lateral to the developing otic placode. Knockdown of fgf10b does not affect initial otic induction but impairs subsequent accumulation of otic cells. Formation of epibranchial placodes and ganglia are also moderately impaired. Combinatorial disruption of fgf10b and fgf3 exacerbates the deficiency of otic cells and eliminates epibranchial induction entirely. Disruption of fgf10b and fgf24 also strongly reduces, but does not eliminate, epibranchial induction. CONCLUSIONS: fgf10b participates in a late phase of otic induction and, in combination with fgf3, is especially critical for epibranchial induction.


Asunto(s)
Región Branquial/embriología , Oído/embriología , Inducción Embrionaria/genética , Factor 3 de Crecimiento de Fibroblastos/fisiología , Factores de Crecimiento de Fibroblastos/fisiología , Mesodermo/metabolismo , Proteínas de Pez Cebra/fisiología , Pez Cebra , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Región Branquial/metabolismo , Embrión no Mamífero , Factor 10 de Crecimiento de Fibroblastos/fisiología , Pez Cebra/embriología , Pez Cebra/genética
11.
Dev Biol ; 373(1): 107-17, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23078916

RESUMEN

Preplacodal ectoderm (PPE) and neural crest (NC) are specified at the interface of neural and nonneural ectoderm and together contribute to the peripheral nervous system in all vertebrates. Bmp activates early steps for both fates during late blastula stage. Low Bmp activates expression of transcription factors Tfap2a and Tfap2c in the lateral neural plate, thereby specifying neural crest fate. Elevated Bmp establishes preplacodal competence throughout the ventral ectoderm by coinducing Tfap2a, Tfap2c, Foxi1 and Gata3. PPE specification occurs later at the end of gastrulation and requires complete attenuation of Bmp, yet expression of PPE competence factors continues well past gastrulation. Here we show that competence factors positively regulate each other's expression during gastrulation, forming a self-sustaining network that operates independently of Bmp. Misexpression of Tfap2a in embryos blocked for Bmp from late blastula stage can restore development of both PPE and NC. However, Tfap2a alone is not sufficient to activate any other competence factors nor does it rescue individual placodes. On the other hand, misexpression of any two competence factors in Bmp-blocked embryos can activate the entire transcription factor network and support the development of NC, PPE and some individual placodes. We also show that while these factors are partially redundant with respect to PPE specification, they later provide non-redundant functions needed for development of specific placodes. Thus, we have identified a gene regulatory network that coordinates development of NC, PPE and individual placodes in zebrafish.


Asunto(s)
Diferenciación Celular/fisiología , Ectodermo/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/genética , Cresta Neural/embriología , Sistema Nervioso Periférico/embriología , Pez Cebra/embriología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , ADN Complementario/biosíntesis , Hibridación in Situ , Morfolinos/genética , Pirazoles/farmacología , Pirimidinas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/metabolismo , Pez Cebra/genética
12.
PLoS Genet ; 8(11): e1003068, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166517

RESUMEN

Neuroblasts of the statoacoustic ganglion (SAG) initially form in the floor of the otic vesicle during a relatively brief developmental window. They soon delaminate and undergo a protracted phase of proliferation and migration (transit-amplification). Neuroblasts eventually differentiate and extend processes bi-directionally to synapse with hair cells in the inner ear and various targets in the hindbrain. Our studies in zebrafish have shown that Fgf signaling controls multiple phases of this complex developmental process. Moderate levels of Fgf in a gradient emanating from the nascent utricular macula specify SAG neuroblasts in laterally adjacent otic epithelium. At a later stage, differentiating SAG neurons express Fgf5, which serves two functions: First, as SAG neurons accumulate, increasing levels of Fgf exceed an upper threshold that terminates the initial phase of neuroblast specification. Second, elevated Fgf delays differentiation of transit-amplifying cells, balancing the rate of progenitor renewal with neuronal differentiation. Laser-ablation of mature SAG neurons abolishes feedback-inhibition and causes precocious neuronal differentiation. Similar effects are obtained by Fgf5-knockdown or global impairment of Fgf signaling, whereas Fgf misexpression has the opposite effect. Thus Fgf signaling renders SAG development self-regulating, ensuring steady production of an appropriate number of neurons as the larva grows.


Asunto(s)
Oído Interno , Factor 5 de Crecimiento de Fibroblastos , Neuronas , Pez Cebra , Animales , Diferenciación Celular , Oído Interno/crecimiento & desarrollo , Oído Interno/inervación , Oído Interno/metabolismo , Epitelio/metabolismo , Factor 5 de Crecimiento de Fibroblastos/genética , Factor 5 de Crecimiento de Fibroblastos/metabolismo , Ganglión/metabolismo , Regulación del Desarrollo de la Expresión Génica , Larva/crecimiento & desarrollo , Larva/metabolismo , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Transducción de Señal , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
13.
Dev Biol ; 364(1): 1-10, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22327005

RESUMEN

Despite the vital importance of Fgf for otic induction, previous attempts to study otic induction through Fgf misexpression have yielded widely varying and contradictory results. There are also discrepancies regarding the ability of Fgf to induce otic tissue in ectopic locations, raising questions about the sufficiency of Fgf and the degree to which other local factors enhance or restrict otic potential. Using heat shock-inducible transgenes to misexpress Fgf3 or Fgf8 in zebrafish, we found that the stage, distribution and level of misexpression strongly influence the response to Fgf. Fgf misexpression during gastrulation can inhibit or promote otic development, depending on context, whereas misexpression after gastrulation leads to expansion of otic markers throughout preplacodal ectoderm surrounding the head. Elevated Fgf also expands expression of the putative competence factor Foxi1, which is required for Fgf to expand other otic markers. Misexpression of downstream factors Pax2a or Pax8 also expands otic markers but cannot bypass the requirement for Fgf or Foxi1. Co-misexpression of Pax2/8 with Fgf8 potentiates formation of ectopic otic vesicles expressing a full range of otic markers. These findings document the variables critically affecting the response to Fgf and clarify the roles of foxi1 and pax2/8 in the otic response.


Asunto(s)
Oído Interno/embriología , Oído Interno/metabolismo , Embrión no Mamífero/metabolismo , Factor 3 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Factor 3 de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Transducción de Señal , Pez Cebra/genética , Proteínas de Pez Cebra/genética
14.
PLoS One ; 6(12): e27778, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22164214

RESUMEN

Vertebrate sensory organs develop in part from cranial placodes, a series of ectodermal thickenings that coalesce from a common domain of preplacodal ectoderm. Mechanisms coordinating morphogenesis and differentiation of discrete placodes are still poorly understood. We have investigated whether placodal assembly in zebrafish requires Integrin- α5 (itga5), an extracellular matrix receptor initially expressed throughout the preplacodal ectoderm. Morpholino knockdown of itga5 had no detectable effect on anterior placodes (pituitary, nasal and lens), but posterior placodes developed abnormally, resulting in disorganization of trigeminal and epibranchial ganglia and reduction of the otic vesicle. Cell motion analysis in GFP-transgenic embryos showed that cell migration in itga5 morphants was highly erratic and unfocused, impairing convergence and blocking successive recruitment of new cells into these placodes. Further studies revealed genetic interactions between itga5 and Fgf signaling. First, itga5 morphants showed changes in gene expression mimicking modest reduction in Fgf signaling. Second, itga5 morphants showed elevated apoptosis in the otic/epibranchial domain, which was rescued by misexpression of Fgf8. Third, knockdown of the Fgf effector erm had no effect by itself but strongly enhanced defects in itga5 morphants. Finally, proper regulation of itga5 requires dlx3b/4b and pax8, which are themselves regulated by Fgf. These findings support a model in which itga5 coordinates cell migration into posterior placodes and augments Fgf signaling required for patterning of these tissues and cell survival in otic/epibranchial placodes.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Integrina alfa5/fisiología , Animales , Tipificación del Cuerpo/genética , Movimiento Celular , Supervivencia Celular , Proteínas de Unión al ADN/metabolismo , Ectodermo/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Morfogénesis/genética , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
15.
Dev Biol ; 358(1): 113-21, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21801718

RESUMEN

Atoh1 is required for differentiation of sensory hair cells in the vertebrate inner ear. Moreover, misexpression of Atoh1 is sufficient to establish ectopic sensory epithelia, making Atoh1 a good candidate for gene therapy to restore hearing. However, competence to form sensory epithelia appears to be limited to discrete regions of the inner ear. To better understand the developmental factors influencing sensory-competence, we examined the effects of misexpressing atoh1a in zebrafish embryos under various developmental conditions. Activation of a heat shock-inducible transgene, hs:atoh1a, resulted in ectopic expression of early markers of sensory development within 2h, and mature hair cells marked by brn3c:GFP began to accumulate 9h after heat shock. The ability of atoh1a to induce ectopic sensory epithelia was maximal when activated during placodal or early otic vesicle stages but declined rapidly thereafter. At no stage was atoh1a sufficient to induce sensory development in dorsal or lateral non-sensory regions of the otic vesicle. However, co-misexpression of atoh1a with fgf3, fgf8 or sox2, genes normally acting in the same gene network with atoh1a, stimulated sensory development in all regions of the otic vesicle. Thus, expression of fgf3, fgf8 or sox2 strongly enhances competence to respond to Atoh1.


Asunto(s)
Oído Interno/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/genética , Células Ciliadas Auditivas/fisiología , Factores de Transcripción SOX/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Oído Interno/embriología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Factores de Transcripción/genética , Transgenes/genética , Proteínas de Pez Cebra/genética
16.
Dev Biol ; 351(1): 90-8, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21215261

RESUMEN

Vertebrate cranial placodes contribute vitally to development of sensory structures of the head. Amongst posterior placodes, the otic placode forms the inner ear whereas nearby epibranchial placodes produce sensory ganglia within branchial clefts. Though diverse in fate, these placodes show striking similarities in their early regulation. In zebrafish, both are initiated by localized Fgf signaling plus the ubiquitous competence factor Foxi1, and both express pax8 and sox3 in response. It has been suggested that Fgf initially induces a common otic/epibranchial field, which later subdivides in response to other signals. However, we find that otic and epibranchial placodes form at different times and by distinct mechanisms. Initially, Fgf from surrounding tissues induces otic expression of pax8 and sox3, which cooperate synergistically to establish otic fate. Subsequently, pax8 works with related genes pax2a/pax2b to downregulate otic expression of foxi1, a necessary step for further otic development. Additionally, pax2/8 activate otic expression of fgf24, which induces epibranchial expression of sox3. Knockdown of fgf24 or sox3 causes severe epibranchial deficiencies but has little effect on otic development. These findings clarify the roles of pax8 and sox3 and support a model whereby the otic placode forms first and induces epibranchial placodes through an Fgf-relay.


Asunto(s)
Región Branquial/embriología , Oído Interno/embriología , Factores de Crecimiento de Fibroblastos/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Factores de Crecimiento de Fibroblastos/fisiología , Factores de Transcripción Forkhead/fisiología , Ganglios/embriología , Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción PAX2/fisiología , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box/fisiología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/fisiología , Factores de Transcripción/genética , Proteínas de Pez Cebra/fisiología
17.
PLoS Genet ; 6(9): e1001133, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20885782

RESUMEN

Preplacodal ectoderm arises near the end of gastrulation as a narrow band of cells surrounding the anterior neural plate. This domain later resolves into discrete cranial placodes that, together with neural crest, produce paired sensory structures of the head. Unlike the better-characterized neural crest, little is known about early regulation of preplacodal development. Classical models of ectodermal patterning posit that preplacodal identity is specified by readout of a discrete level of Bmp signaling along a DV gradient. More recent studies indicate that Bmp-antagonists are critical for promoting preplacodal development. However, it is unclear whether Bmp-antagonists establish the proper level of Bmp signaling within a morphogen gradient or, alternatively, block Bmp altogether. To begin addressing these issues, we treated zebrafish embryos with a pharmacological inhibitor of Bmp, sometimes combined with heat shock-induction of Chordin and dominant-negative Bmp receptor, to fully block Bmp signaling at various developmental stages. We find that preplacodal development occurs in two phases with opposing Bmp requirements. Initially, Bmp is required before gastrulation to co-induce four transcription factors, Tfap2a, Tfap2c, Foxi1, and Gata3, which establish preplacodal competence throughout the nonneural ectoderm. Subsequently, Bmp must be fully blocked in late gastrulation by dorsally expressed Bmp-antagonists, together with dorsally expressed Fgf and Pdgf, to specify preplacodal identity within competent cells abutting the neural plate. Localized ventral misexpression of Fgf8 and Chordin can activate ectopic preplacodal development anywhere within the zone of competence, whereas dorsal misexpression of one or more competence factors can activate ectopic preplacodal development in the neural plate. Conversely, morpholino-knockdown of competence factors specifically ablates preplacodal development. Our work supports a relatively simple two-step model that traces regulation of preplacodal development to late blastula stage, resolves two distinct phases of Bmp dependence, and identifies the main factors required for preplacodal competence and specification.


Asunto(s)
Ectodermo/embriología , Organogénesis , Órganos de los Sentidos/embriología , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Ectodermo/efectos de los fármacos , Ectodermo/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Gastrulación/efectos de los fármacos , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Modelos Biológicos , Sistema Nervioso/efectos de los fármacos , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Cresta Neural/efectos de los fármacos , Cresta Neural/embriología , Cresta Neural/metabolismo , Organogénesis/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas/farmacología , Órganos de los Sentidos/efectos de los fármacos , Pez Cebra/genética
18.
Biochemistry ; 49(31): 6557-66, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20578725

RESUMEN

CAtion/H(+) eXchangers (CAXs) are integral membrane proteins that transport Ca(2+) or other cations by exchange with protons. While several yeast and plant CAX proteins have been characterized, no functional analysis of a vertebrate CAX homologue has yet been reported. In this study, we further characterize a CAX from yeast, VNX1, and initiate characterization of a zebrafish CAX (Cax1). Localization studies indicated that both Vnx1 and Cax1 proteins are found in endomembrane compartments. Biochemical characterization of endomembrane fractions from vnx1 mutant cells and zebrafish Cax1-expressing yeast cells suggested that both yeast and fish CAXs have Ca(2+)/H(+) antiport activities. Additionally, the vnx1 mutation was associated with heightened pH-sensitivity. In zebrafish embryos, cax1 was specifically expressed in neural crest cells. Morpholino knockdown of cax1 caused defects in neural crest development, including alterations in pigmentation, defects in jaw development, and reduction in expression of the neural crest marker, Pax7. Collectively, our findings provide insights into Vnx1 function and support an unexpected role of CAX transporters in animal growth and development.


Asunto(s)
Antiportadores/fisiología , Cresta Neural/crecimiento & desarrollo , Proteínas de Pez Cebra/fisiología , Pez Cebra , Animales , Proteínas de Transporte de Catión , Embrión no Mamífero/química , Proteínas Fúngicas , Concentración de Iones de Hidrógeno , Membranas Intracelulares/química , Proteínas de Transporte de Membrana/fisiología , Proteínas de Saccharomyces cerevisiae , Intercambiadores de Sodio-Hidrógeno
19.
Dev Dyn ; 239(3): 828-43, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20146251

RESUMEN

We have characterized mutations in the early arrest gene, harpy (hrp), and show that they introduce premature stops in the coding region of early mitotic inhibitor1 (Rca1/emi1). In harpy mutants, cells stop dividing during early gastrulation. Lineage analysis confirms that there is little change in cell number after approximately cycle-14. Gross patterning occurs relatively normally, and many organ primordia are produced on time but with smaller numbers of cells. Despite the lack of cell division, some organ systems continue to increase in cell number, suggesting recruitment from surrounding areas. Analysis of bromodeoxyuridine incorporation shows that endoreduplication continues in many cells well past the first day of development, but cells cease endoreduplication once they begin to differentiate and express cell-type markers. Despite relatively normal gross patterning, harpy mutants show several defects in morphogenesis, cell migration and differentiation resulting directly or indirectly from the arrest of cell division.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Ciclo Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mutación , Proteínas de Pez Cebra/metabolismo , Alelos , Anafase , Animales , Bromodesoxiuridina/farmacología , Diferenciación Celular , División Celular , Linaje de la Célula , Genotipo , Neuronas/metabolismo , Factores de Tiempo , Pez Cebra
20.
Dev Biol ; 338(2): 262-9, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20025865

RESUMEN

Sox2 has been variously implicated in maintenance of pluripotent stem cells or, alternatively, early stages of cell differentiation, depending on context. In the developing inner ear, Sox2 initially marks all cells in the nascent sensory epithelium and, in mouse, is required for sensory epithelium formation. Sox2 is eventually downregulated in hair cells but is maintained in support cells, the functional significance of which is unknown. Here we describe regulation and function of sox2 in the zebrafish inner ear. Expression of sox2 begins after the onset of sensory epithelium development and is regulated by Atoh1a/b, Fgf and Notch. Knockdown of sox2 does not prevent hair cell production, but the rate of accumulation is reduced due to sporadic death of differentiated hair cells. We next tested the capacity for hair cell regeneration following laser ablation of mature brn3c:gfp-labeled hair cells. In control embryos, regeneration of lost hair cells begins by 12 h post-ablation and involves transdifferentiation of support cells rather than asymmetric cell division. In contrast, regeneration does not occur in sox2-depleted embryos. These data show that zebrafish sox2 is required for hair cell survival, as well as for transdifferentiation of support cells into hair cells during regeneration.


Asunto(s)
Oído Interno/citología , Células Ciliadas Auditivas/citología , Regeneración , Factores de Transcripción SOX/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Diferenciación Celular , Supervivencia Celular , Regulación de la Expresión Génica , Factores de Transcripción SOX/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/fisiología , Pez Cebra , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA