Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
bioRxiv ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39211164

RESUMEN

Continuous interaction between chimeric antigen receptor (CAR) T cell (CART) and tumors often result in CART dysfunction and tumor escape. We observed that tumors can take up CAR molecules, leaving CARTs without surface-expressed CARs and thus unable to kill tumors after prolonged exposure. Overexpression of Rab5 resulted in augmented clathrin-independent endocytosis, preventing loss of surface-expressed CARs, and enhanced CART activity. Interestingly, we observed membrane protrusions on the CART cell surface which disappeared after multiple tumor challenges. Rab5 maintained these protrusions after repeated tumor engagements and their presence correlated with effective tumor clearance, suggesting a link between endocytosis, membrane protrusions, and cytolytic activity. In vivo , Rab5-expressing CARTs demonstrated improved activity and were able to clear an otherwise refractory mesothelin-expressing solid cancer in humanized mice by maintaining CAR surface expression within the tumor. Thus, pairing Rab5 with CAR expression could improve the clinical efficacy of CART therapy. Highlights "CAR-jacking" occurs when surface CAR is internalized by target tumor cells.Rab5 overexpression prevents "CAR-jacking" and enhances CART function.Rab5 promotes CAR endocytic recycling and maintains membrane protrusions.Rab5-expressing CARTs exhibit enhanced therapeutic efficacy against solid tumors.

2.
J Int AIDS Soc ; 27(8): e26349, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39155436

RESUMEN

INTRODUCTION: To assess the effectiveness of novel HIV curative strategies, "cure" trials require periods of closely monitored antiretroviral therapy (ART) analytical treatment interruptions (ATIs). We performed a systematic review and meta-analysis to identify the impact of ATI with or without novel therapeutics in cure-related studies on the time to viral re-suppression following ART restart. METHODS: Medline, Embase and Web of Science databases were searched for human studies involving ATIs from 1 January 2015 till 22 April 2024. The primary outcome was time to first viral re-suppression (plasma HIV viral load [VL] <50 copies/ml) stratified by receipt of interventional drug with ATI (IA) or ATI-only groups. Random-effects proportional meta-analysis and multivariable Cox proportional hazards analysis were performed using R. RESULTS: Of 1073 studies screened, 13 were included that met the inclusion criteria with VL data available after restarting ART (n = 213 participants). There was no difference between time to viral suppression in IA or ATI-only cohorts (p = 0.22). For 87% of participants, viral suppression within 12 weeks of ART restart was achieved, and all eventually had at least one VL <50 copies/ml during follow-up. After adjusting for covariables, while participants in the IA cohort were associated with less rapid suppression (adjusted hazard ratio [aHR] 0.61, 95% CI 0.40-0.94, p = 0.026), other factors include greater log VL at ART restart (aHR 0.56, 95% CI 0.46-0.68, p<0.001), duration since HIV diagnosis (aHR 0.93, 95% CI 0.89-0.96) and longer intervals between HIV VL monitoring (aHR 0.66, 95% CI 0.59-0.74, p<0.001). However, the use of integrase inhibitors was associated with more rapid viral suppression (aHR 1.74, 95% CI 1.16-2.59). DISCUSSION: When designing studies involving ATIs, information on time to viral re-suppression after restarting ART is important to share with participants, and should be regularly monitored and reported, to assess the impact and safety of specific trial interventions in ATI studies. CONCLUSIONS: The majority of participants achieved viral suppression after restarting ART in ATI studies. ART regimens containing integrase inhibitors and frequent VL monitoring should be offered for people restarting ART after ATI studies to ensure rapid re-suppression.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Carga Viral , Humanos , Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Factores de Tiempo , Resultado del Tratamiento , Carga Viral/efectos de los fármacos , Privación de Tratamiento
3.
Proc Natl Acad Sci U S A ; 121(27): e2322163121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917014

RESUMEN

Turbulent mixing in the ocean exerts an important control on the rate and structure of the overturning circulation. However, the balance of processes underpinning this mixing is subject to significant uncertainties, limiting our understanding of the overturning's deep upwelling limb. Here, we investigate the hitherto primarily neglected role of tens of thousands of seamounts in sustaining deep-ocean upwelling. Dynamical theory indicates that seamounts may stir and mix deep waters by generating lee waves and topographic wake vortices. At low latitudes, stirring and mixing are predicted to be enhanced by a layered vortex regime in the wakes. Using three realistic regional simulations spanning equatorial to middle latitudes, we show that layered wake vortices and elevated mixing are widespread around seamounts. We identify scalings that relate mixing rate within seamount wakes to topographic and hydrographic parameters. We then apply such scalings to a global seamount dataset and an ocean climatology to show that seamount-generated mixing makes an important contribution to the upwelling of deep waters. Our work thus brings seamounts to the fore of the deep-ocean mixing problem and urges observational, theoretical, and modeling efforts toward incorporating the seamounts' mixing effects in conceptual and numerical ocean circulation models.

6.
Public Underst Sci ; 33(2): 142-157, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37861108

RESUMEN

Citizen science is often celebrated. We interrogate this position through exploration of socio-technoscientific phenomena that mirror citizen science yet are disaligned with its ideals. We term this 'Dark Citizen Science'. We identify five conceptual dimensions of citizen science - purpose, process, perceptibility, power and public effect. Dark citizen science mirrors traditional citizen science in purpose and process but diverges in perceptibility, power and public effect. We compare two Internet-based categorisation processes, Citizen Science project Galaxy Zoo and Dark Citizen Science project Google's reCAPTCHA. We highlight that the reader has, likely unknowingly, provided unpaid technoscientific labour to Google. We apply insights from our analysis of dark citizen science to traditional citizen science. Linking citizen science as practice and normative democratic ideal ignores how some science-citizen configurations actively pit practice against ideal. Further, failure to fully consider the implications of citizen science for science and society allows exploitative elements of citizen science to evade the sociological gaze.


Asunto(s)
Ciencia Ciudadana , Humanos , Participación de la Comunidad
7.
PLoS Pathog ; 19(12): e1011853, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38100526

RESUMEN

Engineered T cells hold great promise to become part of an effective HIV cure strategy, but it is currently unclear how best to redirect T cells to target HIV. To gain insight, we generated engineered T cells using lentiviral vectors encoding one of three distinct HIV-specific T cell receptors (TCRs) or a previously optimized HIV-targeting chimeric antigen receptor (CAR) and compared their functional capabilities. All engineered T cells had robust, antigen-specific polyfunctional cytokine profiles when mixed with artificial antigen-presenting cells. However, only the CAR T cells could potently control HIV replication. TCR affinity enhancement did not augment HIV control but did allow TCR T cells to recognize common HIV escape variants. Interestingly, either altering Nef activity or adding additional target epitopes into the HIV genome bolstered TCR T cell anti-HIV activity, but CAR T cells remained superior in their ability to control HIV replication. To better understand why CAR T cells control HIV replication better than TCR T cells, we performed a time course to determine when HIV-specific T cells were first able to activate Caspase 3 in HIV-infected targets. We demonstrated that CAR T cells recognized and killed HIV-infected targets more rapidly than TCR T cells, which correlates with their ability to control HIV replication. These studies suggest that the speed of target recognition and killing is a key determinant of whether engineered T cell therapies will be effective against infectious diseases.


Asunto(s)
Infecciones por VIH , VIH-1 , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores de Antígenos de Linfocitos T/genética , Infecciones por VIH/terapia , Replicación Viral
8.
Cancer Immunol Res ; 11(11): 1524-1537, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37649085

RESUMEN

Natural killer (NK) cells are frequently expanded for the clinic using irradiated, engineered K562 feeder cells expressing a core transgene set of membrane-bound (mb) IL15 and/or mbIL21 together with 41BBL. Prior comparisons of mbIL15 to mbIL21 for NK expansion lack comparisons of key attributes of the resulting NK cells, including their high-dimensional phenotype, polyfunctionality, the breadth and potency of cytotoxicity, cellular metabolism, and activity in xenograft tumor models. Moreover, despite multiple rounds of K562 stimulation, studies of sequential use of mbIL15- and mbIL21-based feeder cells are absent. We addressed these gaps and found that using mbIL15- versus mbIL21-based feeder cells drove distinct phenotypic and functional profiles. Feeder cells expressing mbIL15 alone drove superior functionality by nearly all measures, whereas those expressing mbIL21 alone drove superior yield. In combination, most attributes resembled those imparted by mbIL21, whereas in sequence, NK yield approximated that imparted by the first cytokine, and the phenotype, transcriptome, and function resembled that driven by the second cytokine, highlighting the plasticity of NK cell differentiation. The sequence mbIL21 followed by mbIL15 was advantageous in achieving significant yields of highly functional NK cells that demonstrated equivalent in vivo activity to those expanded by mbIL15 alone in two of three xenograft models. Our findings define the impact of mbIL15 versus mbIL21 during NK expansion and reveal a previously underappreciated tradeoff between NK yield and function for which sequential use of mbIL21-based followed by mbIL15-based feeder cells may be the optimal approach in many settings.


Asunto(s)
Interleucina-15 , Células Asesinas Naturales , Humanos , Interleucina-15/metabolismo , Células K562 , Células Asesinas Naturales/metabolismo , Proliferación Celular , Citocinas/metabolismo
9.
Res Involv Engagem ; 9(1): 39, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291622

RESUMEN

INTRODUCTION: Achieving effective community engagement has been an objective of U.S. National Institutes of Health-funded HIV research efforts, including participation of persons with HIV. Community Advisory Boards (CABs) have remained the predominant model for community engagement since their creation in 1989. As HIV cure-directed research efforts have grown into larger academic-industry partnerships directing resources toward both basic and clinical research under the Martin Delaney Collaboratories (MDC), community input models have also evolved. The BEAT-HIV MDC Collaboratory, based at The Wistar Institute in Philadelphia, United States, implemented a three-part model for community engagement that has shown success in providing greater impact for community engagement across basic, biomedical, and social sciences research efforts. DISCUSSION: In this paper, we review the case study of the formation of the BEAT-HIV Community Engagement Group (CEG) model, starting with the historical partnership between The Wistar Institute as a basic research center and Philadelphia FIGHT as a not-for-profit community-based organization (CBO), and culminating with the growth of community engagement under the BEAT-HIV MDC. Second, we present the impact of a cooperative structure including a Community Advisory Board (CAB), CBO, and researchers through the BEAT-HIV CEG model, and highlight collaborative projects that demonstrate the potential strengths, challenges, and opportunities of this model. We also describe challenges and future opportunities for the use of the CEG model. CONCLUSIONS: Our CEG model integrating a CBO, CAB and scientists could help move us towards the goal of effective, equitable and ethical engagement in HIV cure-directed research. In sharing our lessons learned, challenges and growing pains, we contribute to the science of community engagement into biomedical research efforts with an emphasis on HIV cure-directed research. Our documented experience with implementing the CEG supports greater discussion and independent implementation efforts for this model to engage communities into working teams in a way we find a meaningful, ethical, and sustainable model in support of basic, clinical/biomedical, social sciences and ethics research.


HIV biomedical research groups have prioritized community support and representation as exemplified by the creation of Community Advisory Boards (CABs). Most CABs bring diverse stakeholders to advise on research objectives as part of their activities. The BEAT-HIV Delaney Collaboratory, based at The Wistar Institute in Philadelphia, is a research program created in 2016 to advance HIV cure research. To better engage communities beyond the CAB, the BEAT-HIV Delaney Collaboratory created a Community Engagement Group (CEG) model composed of three distinct components. First, the involvement of a community-based organization (CBO) introduces the historical know-how and relationship with the community. Philadelphia FIGHT fulfills the CBO role as a provider of primary care, education, advocacy, and research support for persons with HIV. Second, the BEAT-HIV CAB provides individual experiences and community input into HIV cure research and gives updates to the broader community about the status of research. Third, basic, clinical/biomedical, and social scientists implement the scientific goals of the BEAT-HIV Collaboratory. In this paper, we aimed to highlight the strengths, challenges, lessons learned, and opportunities of the BEAT-HIV CEG model. We also present examples of collaborative community engagement projects. Our paper contributes to the literature on novel community engagement approaches beyond the CAB. Based on our experience to date using the CEG, a multi-part community engagement model could help move us towards the goal of inclusive, effective, equitable, and ethical engagement in HIV cure research.

10.
Mol Ther ; 31(7): 2120-2131, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081789

RESUMEN

IL-17-producing antigen-specific human T cells elicit potent antitumor activity in mice. Yet, refinement of this approach is needed to position it for clinical use. While activation signal strength regulates IL-17 production by CD4+ T cells, the degree to which T cell antigen receptor (TCR) and costimulation signal strength influences Th17 immunity remains unknown. We discovered that decreasing TCR/costimulation signal strength by incremental reduction of αCD3/costimulation beads progressively altered Th17 phenotype. Moreover, Th17 cells stimulated with αCD3/inducible costimulator (ICOS) beads produced more IL-17A, IFNγ, IL-2, and IL-22 than those stimulated with αCD3/CD28 beads. Compared with Th17 cells stimulated with the standard, strong signal strength (three beads per T cell), Th17 cells propagated with 30-fold fewer αCD3/ICOS beads were less reliant on glucose and favored the central carbon pathway for bioenergetics, marked by abundant intracellular phosphoenolpyruvate (PEP). Importantly, Th17 cells stimulated with weak αCD3/ICOS beads and redirected with a chimeric antigen receptor that recognizes mesothelin were more effective at clearing human mesothelioma. Less effective CAR Th17 cells generated with high αCD3/ICOS beads were rescued by overexpressing phosphoenolpyruvate carboxykinase 1 (PCK1), a PEP regulator. Thus, Th17 therapy can be improved by using fewer activation beads during manufacturing, a finding that is cost effective and directly translatable to patients.


Asunto(s)
Proteína Coestimuladora de Linfocitos T Inducibles , Interleucina-17 , Receptores Quiméricos de Antígenos , Animales , Humanos , Ratones , Antígenos CD28/genética , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Interleucina-17/metabolismo , Activación de Linfocitos , Fosfoenolpiruvato/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Transducción de Señal , Células Th17/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(11): e2219948120, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897967

RESUMEN

A method for low-distortion (low-dissipation, low-dispersion) information propagation in swarm-type networks with suppression of high-frequency noise is presented. Information propagation in current neighbor-based networks, where each agent seeks to achieve a consensus with its neighbors, is diffusion-like, dissipative, and dispersive and does not reflect the wave-like (superfluidic) behavior seen in nature. However, pure wave-like neighbor-based networks have two challenges: i) It requires additional communication for sharing information about time derivatives and ii) it can lead to information decoherence through noise at high frequencies. The main contribution of this work is to show that delayed self-reinforcement (DSR) by the agents using prior information (e.g., using short-term memory) can lead to the wave-like information propagation at low-frequencies as seen in nature without the need for additional information sharing between the agents. Moreover, it is shown that the DSR can be designed to enable suppression of high-frequency noise transmission while limiting the dissipation and dispersion of (lower-frequency) information content leading to similar (cohesive) behavior of agents. In addition to explaining noise-suppressed wave-like information transfer in natural systems, the result impacts the design of noise-suppressing cohesive algorithms for engineered networks.

12.
Blood Adv ; 7(15): 4049-4063, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-36763539

RESUMEN

Golgi membrane protein 1 (GOLM1) is aberrantly expressed in many types of solid tumors and contributes to cancer development; however, its role in hematopoietic and lymphoid neoplasms remains unknown. Here, we report that GOLM1 was significantly upregulated in anaplastic large cell lymphoma (ALCL), particularly in anaplastic lymphoma kinase-positive (ALK+) ALCL. Mechanistically, the expression of GOLM1 was induced by nucleophosmin-ALK in both ALK-transformed T cells and ALCL cell lines through AKT/mTOR pathway. Knockdown of GOLM1 expression led to a reduction in the growth and viability of ALCL cells with increased spontaneous apoptosis, whereas ectopic expression of GOLM1 protected ALCL cells from apoptosis induced by staurosporine treatment. Moreover, GOLM1 directly interacted with B-cell lymphoma-extra large protein (a crucial anti-apoptosis regulator) and significantly prolonged its stability. Introduction of GOLM1 promoted ALK+ ALCL cells colony formation in vitro and tumor growth in a murine xenograft model. Taken together, our findings demonstrate, to our knowledge, for the first time that GOLM1 plays a critical role in suppressing apoptosis and promoting the progression of ALK+ ALCL and provide evidence that GOLM1 is a potential biomarker and therapeutic target in ALK-induced hematological malignancies.


Asunto(s)
Linfoma Anaplásico de Células Grandes , Proteínas Tirosina Quinasas Receptoras , Humanos , Ratones , Animales , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Quinasa de Linfoma Anaplásico , Linfoma Anaplásico de Células Grandes/tratamiento farmacológico , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patología , Línea Celular Tumoral , Estaurosporina , Proteínas de la Membrana/genética
13.
STAR Protoc ; 3(4): 101784, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36386869

RESUMEN

It is technically challenging to generate large doses of regulatory T cells (Tregs) engineered to express a chimeric antigen receptor (CAR) in non-human primates (NHP). Here, we have optimized the manufacturing of CAR Tregs by stringent sorting of Tregs, stimulation by artificial antigen-presenting cells, transduction by simian tropic lentiviral vectors, and antigen-specific expansion. The result of this method is highly suppressive CAR Tregs for use in a pre-clinical, large animal model of transplant tolerance. For complete details on the use and execution of this protocol, please refer to Ellis et al. (2022).


Asunto(s)
Receptores Quiméricos de Antígenos , Animales , Receptores Quiméricos de Antígenos/genética , Células Presentadoras de Antígenos , Linfocitos T Reguladores , Primates , Tolerancia al Trasplante
14.
J Immunol ; 209(5): 864-873, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36130133

RESUMEN

HIV-1-specific CD4+ T cells (TCD4+s) play a critical role in controlling HIV-1 infection. Canonically, TCD4+s are activated by peptides derived from extracellular ("exogenous") Ags displayed in complex with MHC class II (MHC II) molecules on the surfaces of "professional" APCs such as dendritic cells (DCs). In contrast, activated human TCD4+s, which express MHC II, are not typically considered for their APC potential because of their low endocytic capacity and the exogenous Ag systems historically used for assessment. Using primary TCD4+s and monocyte-derived DCs from healthy donors, we show that activated human TCD4+s are highly effective at MHC II-restricted presentation of an immunodominant HIV-1-derived epitope postinfection and subsequent noncanonical processing and presentation of endogenously produced Ag. Our results indicate that, in addition to marshalling HIV-1-specific immune responses during infection, TCD4+s also act as APCs, leading to the activation of HIV-1-specific TCD4+s.


Asunto(s)
Seropositividad para VIH , VIH-1 , Presentación de Antígeno , Linfocitos T CD4-Positivos , Células Dendríticas , Epítopos , Antígenos de Histocompatibilidad Clase II , Humanos , Péptidos , Linfocitos T
15.
Sci Transl Med ; 14(660): eabo6135, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36044599

RESUMEN

T cell receptor (TCR)-based immunotherapy has emerged as a promising therapeutic approach for the treatment of patients with solid cancers. Identifying peptide-human leukocyte antigen (pHLA) complexes highly presented on tumors and rarely expressed on healthy tissue in combination with high-affinity TCRs that when introduced into T cells can redirect T cells to eliminate tumor but not healthy tissue is a key requirement for safe and efficacious TCR-based therapies. To discover promising shared tumor antigens that could be targeted via TCR-based adoptive T cell therapy, we employed population-scale immunopeptidomics using quantitative mass spectrometry across ~1500 tumor and normal tissue samples. We identified an HLA-A*02:01-restricted pan-cancer epitope within the collagen type VI α-3 (COL6A3) gene that is highly presented on tumor stroma across multiple solid cancers due to a tumor-specific alternative splicing event that rarely occurs outside the tumor microenvironment. T cells expressing natural COL6A3-specific TCRs demonstrated only modest activity against cells presenting high copy numbers of COL6A3 pHLAs. One of these TCRs was affinity-enhanced, enabling transduced T cells to specifically eliminate tumors in vivo that expressed similar copy numbers of pHLAs as primary tumor specimens. The enhanced TCR variants exhibited a favorable safety profile with no detectable off-target reactivity, paving the way to initiate clinical trials using COL6A3-specific TCRs to target an array of solid tumors.


Asunto(s)
Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T , Linfocitos T , Antígenos de Neoplasias , Línea Celular Tumoral , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Inmunoterapia Adoptiva/métodos , Proteómica , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/uso terapéutico
16.
Cell Rep Med ; 3(5): 100614, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35551746

RESUMEN

Adoptive transfer of chimeric antigen receptor regulatory T cells (CAR Tregs) is a promising way to prevent allograft loss without the morbidity associated with current therapies. Non-human primates (NHPs) are a clinically relevant model to develop transplant regimens, but manufacturing and engraftment of NHP CAR Tregs have not been demonstrated yet. Here, we describe a culture system that massively expands CAR Tregs specific for the Bw6 alloantigen. In vitro, these Tregs suppress in an antigen-specific manner without pro-inflammatory cytokine secretion or cytotoxicity. In vivo, Bw6-specific CAR Tregs preferentially traffic to and persist in bone marrow for at least 1 month. Following transplant of allogeneic Bw6+ islets and autologous CAR Tregs into the bone marrow of diabetic recipients, CAR Tregs traffic to the site of islet transplantation and maintain a phenotype of suppressive Tregs. Our results establish a framework for the optimization of CAR Treg therapy in NHP disease models.


Asunto(s)
Isoantígenos , Receptores Quiméricos de Antígenos , Traslado Adoptivo , Animales , Macaca , Receptores Quiméricos de Antígenos/genética , Linfocitos T Reguladores
18.
J Spine Surg ; 7(1): 62-67, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33834129

RESUMEN

BACKGROUND: The COVID-19 pandemic first came to prominence in December 2019, and since then has swept the globe, causing one of the largest public health problems seen. It has had a wide-ranging impact on healthcare provision, with a cessation of elective operating. We aimed to assess the impact of COVID-19 on a tertiary referral centre for spinal surgery in England. METHODS: An 82-day study period from 20th March 2020 to 10th June 2020 was used, and all spinal surgical patients were followed up prospectively, comparing patients from the same date range in 2019. We assessed rate of COVID transmission, 30-day mortality rates, complication rates and length of hospital stay in a large tertiary Teaching hospital in England. RESULTS: Seventy-eight patients were operated on during the COVID-19 pandemic period, with a 30-day mortality rate of 4.2%. Two of these deaths were attributable to COVID-19 (2.56%). The mean length of stay was 10.8 days. Neither the 30-day mortality rate or the length of stay was statistically significant compared to the 2019 control period. Five patients (6.4%) tested positive for COVID-19, all were negative at time of surgical intervention. Our complication rate was 10.3% during the COVID-19 pandemic period. CONCLUSIONS: The number of operative cases performed during the COVID-19 pandemic fell by one-third compared to the same period in 2019. The COVID-19 pandemic did not cause a significant increase in 30-day mortality rate, length of stay, or complication rates. Further studies with larger patient numbers and longer-term outcomes will be needed to fully assess the impact of the COVID-19 pandemic on spinal surgery.

19.
Blood Adv ; 5(4): 1069-1080, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33599743

RESUMEN

Expression of programmed cell death protein 1 (PD-1) on natural killer (NK) cells has been difficult to analyze on human NK cells. By testing commercial clones and novel anti-PD-1 reagents, we found expression of functional PD-1 on resting human NK cells in healthy individuals and reconstituting NK cells early after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Peripheral blood samples from healthy individuals and transplant recipients were stained for PD-1 expression using the commercial anti-PD-1 clone PD1.3.1.3, fluorescein isothiocyanate (FITC)-labeled pembrolizumab, or an FITC-labeled single-chain variable fragment (scFv) reagent made from pembrolizumab. These reagents identified low yet consistent basal PD-1 expression on resting NK cells, a finding verified by finding lower PD-1 transcripts in sorted NK cells compared with those in resting or activated T cells. An increase in PD-1 expression was identified on paired resting NK cells after allo-HSCT. Blockade of PD-1 on resting NK cells from healthy donors with pembrolizumab did not enhance NK function against programmed death-ligand 1 (PD-L1)-expressing tumor lines, but blocking with its scFv derivative resulted in a twofold increase in NK cell degranulation and up to a fourfold increase in cytokine production. In support of this mechanism, PD-L1 overexpression of K562 targets suppressed NK cell function. Interleukin-15 (IL-15) activity was potent and could not be further enhanced by PD-1 blockade. A similar increase in function was observed with scFv PD-1 blockade on resting blood NK cells after allo-HSCT. We identify the functional importance of the PD-1/PD-L1 axis on human NK cells in which blockade or activation to overcome inhibition will enhance NK cell-mediated antitumor control.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Neoplasias , Humanos , Células Asesinas Naturales , Activación de Linfocitos , Receptor de Muerte Celular Programada 1
20.
Nat Rev Genet ; 22(7): 427-447, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33603158

RESUMEN

Genetically engineered T cell immunotherapies have provided remarkable clinical success to treat B cell acute lymphoblastic leukaemia by harnessing a patient's own T cells to kill cancer, and these approaches have the potential to provide therapeutic benefit for numerous other cancers, infectious diseases and autoimmunity. By introduction of either a transgenic T cell receptor or a chimeric antigen receptor, T cells can be programmed to target cancer cells. However, initial studies have made it clear that the field will need to implement more complex levels of genetic regulation of engineered T cells to ensure both safety and efficacy. Here, we review the principles by which our knowledge of genetics and genome engineering will drive the next generation of adoptive T cell therapies.


Asunto(s)
Ingeniería Genética , Inmunoterapia , Linfocitos T/inmunología , Animales , Ingeniería Genética/tendencias , Humanos , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA