Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
PeerJ ; 11: e15595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404477

RESUMEN

Macrofauna can contribute substantially to the organic matter cycling on the seafloor, yet the role of terrestrial and chemosynthetic organic matter in the diets of microphagous (deposit and suspension) feeders is poorly understood. In the present study, we used stable isotopes of carbon and nitrogen to test the hypothesis that the terrestrial organic matter supplied with river runoff and local chemosynthetic production at methane seeps might be important organic matter sources for macrofaunal consumers on the Laptev Sea shelf. We sampled locations from three habitats with the presumed differences in organic matter supply: "Delta" with terrestrial inputs from the Lena River, "Background" on the northern part of the shelf with pelagic production as the main organic matter source, and "Seep" in the areas with detected methane seepage, where chemosynthetic production might be available. Macrobenthic communities inhabiting each of the habitats were characterized by a distinct isotopic niche, mostly in terms of δ13C values, directly reflecting differences in the origin of organic matter supply, while δ15N values mostly reflected the feeding group (surface deposit/suspension feeders, subsurface deposit feeders, and carnivores). We conclude that both terrestrial and chemosynthetic organic matter sources might be substitutes for pelagic primary production in the benthic food webs on the largely oligotrophic Laptev Sea shelf. Furthermore, species-specific differences in the isotopic niches of species belonging to the same feeding group are discussed, as well as the isotopic niches of the symbiotrophic tubeworm Oligobrachia sp. and the rissoid gastropod Frigidoalvania sp., which are exclusively associated with methane seeps.


Asunto(s)
Ecosistema , Gastrópodos , Animales , Isótopos de Carbono/análisis , Cadena Alimentaria , Nitrógeno , Metano
2.
Nat Commun ; 14(1): 2814, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198188

RESUMEN

Bacterial symbioses allow annelids to colonise extreme ecological niches, such as hydrothermal vents and whale falls. Yet, the genetic principles sustaining these symbioses remain unclear. Here, we show that different genomic adaptations underpin the symbioses of phylogenetically related annelids with distinct nutritional strategies. Genome compaction and extensive gene losses distinguish the heterotrophic symbiosis of the bone-eating worm Osedax frankpressi from the chemoautotrophic symbiosis of deep-sea Vestimentifera. Osedax's endosymbionts complement many of the host's metabolic deficiencies, including the loss of pathways to recycle nitrogen and synthesise some amino acids. Osedax's endosymbionts possess the glyoxylate cycle, which could allow more efficient catabolism of bone-derived nutrients and the production of carbohydrates from fatty acids. Unlike in most Vestimentifera, innate immunity genes are reduced in O. frankpressi, which, however, has an expansion of matrix metalloproteases to digest collagen. Our study supports that distinct nutritional interactions influence host genome evolution differently in highly specialised symbioses.


Asunto(s)
Anélidos , Poliquetos , Animales , Simbiosis/genética , Anélidos/genética , Poliquetos/genética , Poliquetos/metabolismo , Genoma/genética , Genómica , Filogenia
3.
J Exp Zool B Mol Dev Evol ; 340(5): 366-376, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36859788

RESUMEN

Nuchal organs are epidermal sensory structures present in most annelids. Based on one of the interpretations, they serve in larval settlement. Siboglinids lack nuchal organs in adult and larval stages, however, larvae of some siboglinids inhabiting seeps and hydrothermal vents are capable of swimming up to 100 km away from their home hydrothermal field to colonize a new one. One question that remains is, what organ are siboglinid larvae using to search and locate suitable substrates? To determine if any nuchal organs are present in siboglinid larvae, we studied the head and sensory apparatus in successive larval stages in a frenulate, Siboglinum fiordicum (Webb, 1963), using transmission electron microscopy and immunocytochemistry. In the early trochophore stage, we found an unpaired dorsal organ lying proximal to the posterior prototroch. This organ consists of trochoblast- and "covering" cells. Trochoblasts exhibited serotonin-like immunoreactivity and likely correspond to ciliated supporting cells, where cilia and microvilli project into the olfactory chamber. The "covering" cells are characterized by the presence of large nuclei with numerous pores and thick processes that project into the olfactory chamber, forming the contacts with the trochoblast projections. We have shown for the first time the presence of a nuchal-like organ in annelids as early as the trochophore stage. The presence of this organ in siboglinid trochophores while they are still in the inside the female tube suggests that this structure might be associated with functions other than settlement, such as communication or initiation of the departure from her tube.


Asunto(s)
Anélidos , Poliquetos , Animales , Femenino , Sistema Nervioso , Larva
4.
Zoological Lett ; 7(1): 15, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34865650

RESUMEN

The Oweniidae are marine annelids with many unusual features of organ system, development, morphology, and ultrastructure. Together with magelonids, oweniids have been placed within the Palaeoannelida, a sister group to all remaining annelids. The study of this group may increase our understanding of the early evolution of annelids (including their radiation and diversification). In the current research, the morphology and ulta-anatomy of the head region of Owenia borealis is studied by scanning electron microscopy (SEM), 3D reconstructions, transmission electron microscopy (TEM), and whole-mount immunostaining with confocal laser scanning microscopy. According to SEM, the tentacle apparatus consists of 8-14 branched arms, which are covered by monociliary cells that form a ciliary groove extending along the oral side of the arm base. Each tentacle contains a coelomic cavity with a network of blood capillaries. Monociliary myoepithelial cells of the tentacle coelomic cavity form both the longitudinal and the transverse muscles. The structure of this myoepithelium is intermediate between a simple and pseudo-stratified myoepithelium. Overall, tentacles lack prominent zonality, i.e., co-localization of ciliary zones, neurite bundles, and muscles. This organization, which indicates a non-specialized tentacle crown in O. borealis and other oweniids with tentacles, may be ancestral for annelids. TEM, light, and confocal laser scanning microscopy revealed that the head region contains the anterior nerve center comprising of outer and inner (=circumoral) nerve rings. Both nerve rings are organized as concentrated nerve plexus, which contains perikarya and neurites extending between basal projections of epithelial cells (radial glia). The outer nerve ring gives rise to several thick neurite bundles, which branch and extend along aboral side of each tentacle. Accordingly to their immunoreactivity, both rings of the anterior nerve center could be homologized with the dorsal roots of circumesophageal connectives of the typical annelids. Accordingly to its ultrastructure, the outer nerve ring of O. borealis and so-called brain of other oweniids can not be regarded as a typical brain, i.e. the most anterior ganglion, because it lacks ganglionic structure.

5.
Front Zool ; 18(1): 44, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34530856

RESUMEN

BACKGROUND: Many annelids, including well-studied species such as Platynereis, show similar structured segments along their body axis (homonomous segmentation). However, numerous annelid species diverge from this pattern and exhibit specialised segments or body regions (heteronomous segmentation). Recent phylogenomic studies and paleontological findings suggest that a heteronomous body architecture may represent an ancestral condition in Annelida. To better understand the segmentation within heteronomous species we describe the myogenesis and mesodermal delineation of segments in Siboglinum fiordicum during development. RESULTS: Employing confocal and transmission electron microscopy we show that the somatic longitudinal musculature consists of four separate strands, among which ventrolateral one is the most prominent and is proposed to drive the search movements of the head of the late metatrochophore. The somatic circular musculature lies inside the longitudinal musculature and is predominantly developed at the anterior end of the competent larva to support the burrowing behaviour. Our application of transmission electron microscopy allows us to describe the developmental order of the non-muscular septa. The first septum to form is supported by thick bundles of longitudinal muscles and separates the body into an anterior and a posterior region. The second group of septa to develop further divides the posterior body region (opisthosoma) and is supported by developing circular muscles. At the late larval stage, a septum reinforced by circular muscles divides the anterior body region into a forepart and a trunk segment. The remaining septa and their circular muscles form one by one at the very posterior end of the opisthosoma. CONCLUSIONS: The heteronomous Siboglinum lacks the strict anterior to posterior sequence of segment formation as it is found in the most studied annelid species. Instead, the first septum divides the body into two body regions before segments are laid down in first the posterior opisthosoma and then in the anterior body, respectively. Similar patterns of segment formation are described for the heteronomous chaetopterid Chaetopterus variopedatus and serpulid Hydroides elegans and may represent an adaptation of these annelids to the settlement and transition to the sedentarian-tubiculous mode of life.

6.
PLoS One ; 13(12): e0198271, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30543637

RESUMEN

Tracing the evolution of the siboglinid group, peculiar group of marine gutless annelids, requires the detailed study of the fragmentarily explored central nervous system of vestimentiferans and other siboglinids. 3D reconstructions of the neuroanatomy of Riftia revealed that the "brain" of adult vestimentiferans is a fusion product of the supraesophageal and subesophageal ganglia. The supraesophageal ganglion-like area contains the following neural structures that are homologous to the annelid elements: the peripheral perikarya of the brain lobes, two main transverse commissures, mushroom-like structures, commissural cell cluster, and the circumesophageal connectives with two roots which give rise to the palp neurites. Three pairs of giant perikarya are located in the supraesophageal ganglion, giving rise to the paired giant axons. The circumesophageal connectives run to the VNC. The subesophageal ganglion-like area contains a tripartite ventral aggregation of perikarya (= the postoral ganglion of the VNC) interconnected by the subenteral commissure. The paired VNC is intraepidermal, not ganglionated over most of its length, associated with the ciliary field, and comprises the giant axons. The pairs of VNC and the giant axons fuse posteriorly. Within siboglinids, the vestimentiferans are distinguished by a large and considerably differentiated brain. This reflects the derived development of the tentacle crown. The tentacles of vestimentiferans are homologous to the annelid palps based on their innervation from the dorsal and ventral roots of the circumesophageal connectives. Neuroanatomy of the vestimentiferan brains is close to the brains of Cirratuliiformia and Spionida/Sabellida, which have several transverse commissures, specific position of the giant somata (if any), and palp nerve roots (if any). The palps and palp neurite roots originally developed in all main annelid clades (basally branching, errantian and sedentarian annelids), show the greatest diversity in their number in sedentarian species. Over the course of evolution of Sedentaria, the number of palps and their nerve roots either dramatically increased (as in vestimentiferan siboglinids) or were lost.


Asunto(s)
Evolución Biológica , Sistema Nervioso/ultraestructura , Poliquetos/ultraestructura , Animales , Poliquetos/clasificación
7.
J Morphol ; 278(6): 810-827, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28345239

RESUMEN

The giant dimensions of vestimentiferan Riftia pachyptila (Jones, ) are achieved thanks to the well-developed vascular system. In the vestimentum, there is a complicated net of lacunae, including the brain blood supply and the ventral lacuna underlying the ciliary field. The trunk region has an extensive network of blood vessels feeding the gonads («rete mirabile¼). The thick muscular lining of the mesenterial vessels in the trunk and the dorsal vessel in the opisthosome serves as an additional pump, pushing blood into numerous vessels in the segments. It was hypothesized that the blood envelope of the ventral blood vessel in the trunk provides the blood supply to the trophosome. The 3D reconstruction has revealed that there are two vascular systems of the tentacular crown of R. pachyptila. Blood runs into the tentacles via axial afferent vessels, as described earlier only for Riftia, and also via basal ones, as described for other vestimentiferans except Riftia. The basal ones are poorly developed, and the number of lamellar blood vessels is small, indicating a lack of demand for these within huge R. pachyptila. It appears that the presence of these vessels is the preserved ancestral state of Vestimentifera. In different portions of the dorsal vessel, the morphology of the intravasal body varies, depending on function.


Asunto(s)
Vasos Sanguíneos/anatomía & histología , Poliquetos/anatomía & histología , Animales , Corazón/anatomía & histología , Especificidad de Órganos , Flujo Sanguíneo Regional
8.
BMC Evol Biol ; 16: 83, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27080383

RESUMEN

BACKGROUND: Bone-devouring Osedax worms were described over a decade ago from deep-sea whale falls. The gutless females (and in one species also the males) have a unique root system that penetrates the bone and nourishes them via endosymbiotic bacteria. Emerging from the bone is a cylindrical trunk, which is enclosed in a transparent tube, that generally gives rise to a plume of four palps (or tentacles). In most Osedax species, dwarf males gather in harems along the female's trunk and the nervous system of these microscopic forms has been described in detail. Here, the nervous system of bone-eating Osedax forms are described for the first time, allowing for hypotheses on how the abberant ventral brain and nervous system of Siboglinidae may have evolved from a ganglionated nervous system with a dorsal brain, as seen in most extant annelids. RESULTS: The intraepidermal nervous systems of four female Osedax spp. and the bone-eating O. priapus male were reconstructed in detail by a combination of immunocytochemistry, CLSM, histology and TEM. They all showed a simple nervous system composed of an anterior ventral brain, connected with anteriorly directed paired palp and gonoduct nerves, and four main pairs of posteriorly directed longitudinal nerves (2 ventral, 2 ventrolateral, 2 sets of dorso-lateral, 2 dorsal). Transverse peripheral nerves surround the trunk, ovisac and root system. The nervous system of Osedax resembles that of other siboglinids, though possibly presenting additional lateral and dorsal longitudinal nerves. It differs from most Sedentaria in the presence of an intraepidermal ventral brain, rather than a subepidermal dorsal brain, and by having an intraepidermal nerve cord with several plexi and up to three main commissures along the elongated trunk, which may comprise two indistinct segments. CONCLUSIONS: Osedax shows closer neuroarchitectural resemblance to Vestimentifera + Sclerolinum (= Monilifera) than to Frenulata. The intraepidermal nervous system with widely separated nerve cords, double brain commissures, double palp nerves and other traits found in Osedax can all be traced to represent ancestral states of Siboglinidae. A broader comparison of the nervous system and body regions across Osedax and other siboglinids allows for a reinterpretation of the anterior body region in the group.


Asunto(s)
Encéfalo/citología , Poliquetos/anatomía & histología , Animales , Evolución Biológica , Huesos , Conducta Alimentaria , Femenino , Masculino , Microscopía Confocal , Tejido Nervioso/ultraestructura , Sistema Nervioso/anatomía & histología , Poliquetos/fisiología
9.
Front Zool ; 13: 5, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26862347

RESUMEN

BACKGROUND: Oweniids are marine tubeworms burrowing in muddy sediments that in current phylogenies form an early branching lineage within Annelida. Little is known about their general morphology, in particular the nervous system. Here we provide an immunocytochemical investigation of the nervous system of Galathowenia oculata in order to discuss putative ancestral neuronal features in Oweniidae. RESULTS: Adult Galathowenia oculata have neither a supraesophageal ganglion nor ganglia associated with the ventral nerve cord. Instead, there is a dorsal brain commissure in the head collar that is engulfed by a cellular cortex. Accordingly, we herein term this neural structure "medullary brain commissure". The anterior margin of the head collar exhibits numerous neurites that emerge from the brain commissure. The dorsolateral folds are innervated by the ventrolateral neurite bundles extending from the circumesophageal connectives. In the anterior uniramous and biramous segments immunoreactive somata are distributed evenly along the ventral nerve cord and arranged metamerically in the posterior-most short segments. One dorsal and two pairs of lateral neurite bundles extend longitudinally along the body. Numerous serially arranged circular neurite bundles were labeled in anteriormost long segments. Metameric arrangement of the circular neurite bundles stained against FMRFamide and acetylated α-tubulin is revealed in posterior short segments. For the first time immunoreactive somata arranged in clusters are reported within the pygidium in oweniids. CONCLUSIONS: Due to the lack of head appendages and a sedentary mode of life, G. oculata exhibits a single dorsal commissure (versus a brain with four commissures in most annelids). A "medullary brain commissure" is known so far only in Oweniidae and Echiura. Lack of ganglia and metamery in the ventral nerve cord of the anteriormost segments might be the result of the elongation of these segments. In the short posterior segments the metamery of immunoreactive somata and circular neurite bundles is conserved. We hypothesize that the unpaired ventral nerve cord in adult oweniids might be a result of an initially paired ventral nerve cord that fuses during development, a condition not uncommon within Annelida.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA