Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Front Cell Dev Biol ; 12: 1435708, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156975

RESUMEN

Introduction: Breast cancer (BC) is the leading cause of death among women, primarily due to its potential for metastasis. As BC progresses, the extracellular matrix (ECM) produces more type-I collagen, resulting in increased stiffness. This alteration influences cellular behaviors such as migration, invasion, and metastasis. Specifically, cancer cells undergo changes in gene expression that initially promote an epithelial-to-mesenchymal transition (EMT) and subsequently, a transition from a mesenchymal to an amoeboid (MAT) migration mode. In this way, cancer cells can migrate more easily through the stiffer microenvironment. Despite their importance, understanding MATs remains challenging due to the difficulty of replicating in vitro the conditions for cell migration that are observed in vivo. Methods: To address this challenge, we developed a three-dimensional (3D) growth system that replicates the different matrix properties observed during the progression of a breast tumor. We used this model to study the migration and invasion of the Triple-Negative BC (TNBC) cell line MDA-MB-231, which is particularly subject to metastasis. Results: Our results indicate that denser collagen matrices present a reduction in porosity, collagen fiber size, and collagen fiber orientation, which are associated with the transition of cells to a rounder morphology with bleb-like protrusions. We quantified how this transition is associated with a more persistent migration, an enhanced invasion capacity, and a reduced secretion of matrix metalloproteinases. Discussion: Our findings suggest that the proposed 3D growth conditions (especially those with high collagen concentrations) mimic key features of MATs, providing a new platform to study the physiology of migratory transitions and their role in BC progression.

2.
Arch Med Res ; 55(6): 103039, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981341

RESUMEN

Aging is characterized by the decline in many of the individual's capabilities. It has been recognized that the brain undergoes structural and functional changes during aging that are occasionally associated with the development of neurodegenerative diseases. In this sense, altered glutamatergic neurotransmission, which involves the release, binding, reuptake, and degradation of glutamate (Glu) in the brain, has been widely studied in physiological and pathophysiological aging. In particular, changes in glutamatergic neurotransmission are exacerbated during neurodegenerative diseases and are associated with cognitive impairment, characterized by difficulties in memory, learning, concentration, and decision-making. Thus, in the present manuscript, we aim to highlight the relevance of glutamatergic neurotransmission during cognitive impairment to develop novel strategies to prevent, ameliorate, or delay cognitive decline. To achieve this goal, we provide a comprehensive review of the changes reported in glutamatergic neurotransmission components, such as Glu transporters and receptors during physiological aging and in the most studied neurodegenerative diseases. Finally, we describe the current therapeutic strategies developed to target glutamatergic neurotransmission.


Asunto(s)
Envejecimiento , Disfunción Cognitiva , Ácido Glutámico , Enfermedades Neurodegenerativas , Transmisión Sináptica , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Envejecimiento/fisiología , Envejecimiento/metabolismo , Ácido Glutámico/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología
3.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928196

RESUMEN

LPA3 receptors were expressed in TREx HEK 293 cells, and their signaling and phosphorylation were studied. The agonist, lysophosphatidic acid (LPA), increased intracellular calcium and ERK phosphorylation through pertussis toxin-insensitive processes. Phorbol myristate acetate, but not LPA, desensitizes LPA3-mediated calcium signaling, the agonists, and the phorbol ester-induced LPA3 internalization. Pitstop 2 (clathrin heavy chain inhibitor) markedly reduced LPA-induced receptor internalization; in contrast, phorbol ester-induced internalization was only delayed. LPA induced rapid ß-arrestin-LPA3 receptor association. The agonist and the phorbol ester-induced marked LPA3 receptor phosphorylation, and phosphorylation sites were detected using mass spectrometry. Phosphorylated residues were detected in the intracellular loop 3 (S221, T224, S225, and S229) and in the carboxyl terminus (S321, S325, S331, T333, S335, Y337, and S343). Interestingly, phosphorylation sites are within sequences predicted to constitute ß-arrestin binding sites. These data provide insight into LPA3 receptor signaling and regulation.


Asunto(s)
Lisofosfolípidos , Receptores del Ácido Lisofosfatídico , Transducción de Señal , Humanos , beta-Arrestinas/metabolismo , Sitios de Unión , Señalización del Calcio , Células HEK293 , Lisofosfolípidos/metabolismo , Fosforilación , Receptores del Ácido Lisofosfatídico/metabolismo
4.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732158

RESUMEN

Biological membranes are composed of a lipid bilayer with embedded proteins, including ion channels like the epithelial sodium channel (ENaC), which are critical for sodium homeostasis and implicated in arterial hypertension (HTN). Changes in the lipid composition of the plasma membrane can significantly impact cellular processes related to physiological functions. We hypothesized that the observed overexpression of ENaC in neutrophils from HTN patients might result from alterations in the structuring domains within the plasma membrane, disrupting the endocytic processes responsible for ENaC retrieval. This study assessed the structural lipid composition of neutrophil plasma membranes from HTN patients along with the expression patterns of key elements regulating ENaC at the plasma membrane. Our findings suggest alterations in microdomain structure and SGK1 kinase activity, which could prolong ENaC presence on the plasma membrane. Additionally, we propose that the proteasomal and lysosomal degradation pathways are insufficient to diminish ENaC presence at the plasma membrane in HTN. These results highlight the importance of understanding ENaC retrieval mechanisms and suggest that targeting these mechanisms could provide insights for developing drugs to prevent and treat HTN.


Asunto(s)
Membrana Celular , Endocitosis , Canales Epiteliales de Sodio , Hipertensión , Neutrófilos , Canales Epiteliales de Sodio/metabolismo , Humanos , Neutrófilos/metabolismo , Hipertensión/metabolismo , Hipertensión/patología , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Masculino , Femenino , Proteínas Inmediatas-Precoces/metabolismo , Persona de Mediana Edad , Microdominios de Membrana/metabolismo
5.
Int J Mol Sci ; 25(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38791546

RESUMEN

Lysophosphatidic acid (LPA) type 3 (LPA3) receptor mutants were generated in which the sites detected phosphorylated were substituted by non-phosphorylatable amino acids. Substitutions were made in the intracellular loop 3 (IL3 mutant), the carboxyl terminus (Ctail), and both domains (IL3/Ctail). The wild-type (WT) receptor and the mutants were expressed in T-REx HEK293 cells, and the consequences of the substitutions were analyzed employing different functional parameters. Agonist- and LPA-mediated receptor phosphorylation was diminished in the IL3 and Ctail mutants and essentially abolished in the IL3/Ctail mutant, confirming that the main phosphorylation sites are present in both domains and their role in receptor phosphorylation eliminated by substitution and distributed in both domains. The WT and mutant receptors increased intracellular calcium and ERK 1/2 phosphorylation in response to LPA and PMA. The agonist, Ki16425, diminished baseline intracellular calcium, which suggests some receptor endogenous activity. Similarly, baseline ERK1/2 phosphorylation was diminished by Ki16425. An increase in baseline ERK phosphorylation was detected in the IL3/Ctail mutant. LPA and PMA-induced receptor interaction with ß-arrestin 2 and LPA3 internalization were severely diminished in cells expressing the mutants. Mutant-expressing cells also exhibit increased baseline proliferation and response to different stimuli, which were inhibited by the antagonist Ki16425, suggesting a role of LPA receptors in this process. Migration in response to different attractants was markedly increased in the Ctail mutant, which the Ki16425 antagonist also attenuated. Our data experimentally show that receptor phosphorylation in the distinct domains is relevant for LPA3 receptor function.


Asunto(s)
Lisofosfolípidos , Receptores del Ácido Lisofosfatídico , Transducción de Señal , Humanos , Fosforilación , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Células HEK293 , Lisofosfolípidos/metabolismo , Calcio/metabolismo , Endocitosis , Mutación
6.
Geroscience ; 46(4): 3511-3524, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38358578

RESUMEN

COVID-19 has been contained; however, the side effects associated with its infection continue to be a challenge for public health, particularly for older adults. On the other hand, epigenetic status contributes to the inter-individual health status and is associated with COVID-19 severity. Nevertheless, current studies focus only on severe COVID-19. Considering that most of the worldwide population developed mild COVID-19 infection. In the present exploratory study, we aim to analyze the association of mild COVID-19 with epigenetic ages (HorvathAge, HannumAge, GrimAge, PhenoAge, SkinAge, and DNAmTL) and clinical variables obtained from a Mexican cohort of older adults. We found that all epigenetic ages significantly differ from the chronological age, but only GrimAge is elevated. Additionally, both the intrinsic epigenetic age acceleration (IEAA) and the extrinsic epigenetic age acceleration (EEAA) are accelerated in all patients. Moreover, we found that immunological estimators and DNA damage were associated with PhenoAge, SkinBloodHorvathAge, and HorvathAge, suggesting that the effects of mild COVID-19 on the epigenetic clocks are mainly associated with inflammation and immunology changes. In conclusion, our results show that the effects of mild COVID-19 on the epigenetic clock are mainly associated with the immune system and an increase in GrimAge, IEAA, and EEAA.


Asunto(s)
COVID-19 , Humanos , Anciano , Masculino , Femenino , México/epidemiología , Epigénesis Genética , Anciano de 80 o más Años , Índice de Severidad de la Enfermedad , SARS-CoV-2 , Envejecimiento/genética , Envejecimiento/fisiología , Persona de Mediana Edad
7.
Am J Physiol Renal Physiol ; 326(3): F460-F476, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38269409

RESUMEN

Kidney-specific with-no-lysine kinase 1 (KS-WNK1) is an isoform of WNK1 kinase that is predominantly found in the distal convoluted tubule of the kidney. The precise physiological function of KS-WNK1 remains unclear. Some studies have suggested that it could play a role in regulating potassium renal excretion by modulating the activity of the Na+-Cl- cotransporter (NCC). However, changes in the potassium diet from normal to high failed to reveal a role for KS-WNK1, but under a normal-potassium diet, the expression of KS-WNK1 is negligible. It is only detectable when mice are exposed to a low-potassium diet. In this study, we investigated the role of KS-WNK1 in regulating potassium excretion under extreme changes in potassium intake. After following a zero-potassium diet (0KD) for 10 days, KS-WNK1-/- mice had lower plasma levels of K+ and Cl- while exhibiting higher urinary excretion of Na+, Cl-, and K+ compared with KS-WNK1+/+ mice. After 10 days of 0KD or normal-potassium diet (NKD), all mice were challenged with a high-potassium diet (HKD). Plasma K+ levels markedly increased after the HKD challenge only in mice previously fed with 0KD, regardless of genotype. KSWNK1+/+ mice adapt better to HKD challenge than KS-WNK1-/- mice after a potassium-retaining state. The difference in the phosphorylated NCC-to-NCC ratio between KS-WNK1+/+ and KS-WNK1-/- mice after 0KD and HKD indicates a role for KS-WNK1 in both NCC phosphorylation and dephosphorylation. These observations show that KS-WNK1 helps the distal convoluted tubule to respond to extreme changes in potassium intake, such as those occurring in wildlife.NEW & NOTEWORTHY The findings of this study demonstrate that kidney-specific with-no-lysine kinase 1 plays a role in regulating urinary electrolyte excretion during extreme changes in potassium intake, such as those occurring in wildlife. .


Asunto(s)
Ratones Noqueados , Potasio en la Dieta , Proteína Quinasa Deficiente en Lisina WNK 1 , Animales , Masculino , Ratones , Riñón/metabolismo , Túbulos Renales Distales/metabolismo , Ratones Endogámicos C57BL , Fosforilación , Potasio/orina , Potasio/metabolismo , Potasio/sangre , Potasio en la Dieta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Eliminación Renal , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Femenino
8.
Exp Cell Res ; 433(2): 113847, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37931771

RESUMEN

Hypertension is a multifactorial disease characterized by vascular and renal dysfunction, cardiovascular remodeling, inflammation, and fibrosis, all of which are associated with oxidative stress. We previously demonstrated cellular reactive oxygen species (ROS) imbalances may impact the structural and biochemical functions of blood cells and reported downregulation of ß-dystroglycan (ß-Dg) and overexpression of the epithelial sodium channel (ENaC) contribute to the pathophysiology of hypertension. In this study, we aimed to determine the expression of dystroglycans (Dg) and ENaC in platelet progenitors (megakaryocytes) and their surrounding niches. Thin sections of bone marrow from 5- and 28-week-old spontaneous hypertensive rats (SHR) were compared to age-matched normotensive rats (WKY). Cytometry and immunohistochemical assays demonstrated an oxidative environment in SHR bone marrow, characterized by high levels of myeloperoxidase and 3-nitrotyrosine and downregulation of peroxiredoxin II. In addition, transmission electron micrography and confocal microscopy revealed morphological changes in platelets and Mgks from SHR rats, including swollen mitochondria. Quantitative qRT-PCR assays confirmed downregulation of Dg mRNA and immunohistochemistry and western-blotting validated low expression of ß-Dg, mainly in the phosphorylated form, in Mgks from 28-week-old SHR rats. Moreover, we observed a progressive increase in ß-1 integrin expression in Mgks and extracellular matrix proteins in Mgk niches in SHR rats compared to WKY controls. These results indicate accumulation of ROS promotes oxidative stress within the bone marrow environment and detrimentally affects cellular homeostasis in hypertensive individuals.


Asunto(s)
Distroglicanos , Hipertensión , Ratas , Animales , Especies Reactivas de Oxígeno , Ratas Endogámicas SHR , Megacariocitos/metabolismo , Ratas Endogámicas WKY , Hipertensión/metabolismo
9.
Mol Cell Endocrinol ; 570: 111930, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37054840

RESUMEN

LPA1 internalization to endosomes was studied employing Förster Resonance Energy Transfer (FRET) in cells coexpressing the mCherry-lysophosphatidic acid LPA1 receptors and distinct eGFP-tagged Rab proteins. Lysophosphatidic acid (LPA)-induced internalization was rapid and decreased afterward: phorbol myristate acetate (PMA) action was slower and sustained. LPA stimulated LPA1-Rab5 interaction rapidly but transiently, whereas PMA action was rapid but sustained. Expression of a Rab5 dominant-negative mutant blocked LPA1-Rab5 interaction and receptor internalization. LPA-induced LPA1-Rab9 interaction was only observed at 60 min, and LPA1-Rab7 interaction after 5 min with LPA and after 60 min with PMA. LPA triggered immediate but transient rapid recycling (i.e., LPA1-Rab4 interaction), whereas PMA action was slower but sustained. Agonist-induced slow recycling (LPA1-Rab11 interaction) increased at 15 min and remained at this level, whereas PMA action showed early and late peaks. Our results indicate that LPA1 receptor internalization varies with the stimuli.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Receptores del Ácido Lisofosfatídico , Receptores del Ácido Lisofosfatídico/metabolismo , Fosforilación , Acetato de Tetradecanoilforbol/farmacología , Endosomas/metabolismo , Lisofosfolípidos/farmacología , Lisofosfolípidos/metabolismo
10.
J Ovarian Res ; 15(1): 85, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869556

RESUMEN

BACKGROUND: The postnatal mammalian ovary undergoes a series of changes to ensure the maturation of sufficient follicles to support ovulation and fecundation over the reproductive life. It is well known that intracellular [Ca2+]i signals are necessary for ovulation, fertilization, and egg activation. However, we lack detailed knowledge of the molecular identity, cellular distribution, and functional role of Ca2+ channels expressed during folliculogenesis. In the neonatal period, ovarian maturation is controlled by protein growth factors released from the oocyte and granulosa cells. Conversely, during the early infantile period, maturation becomes gonadotropin-dependent and is controlled by granulosa and theca cells. The significance of intracellular Ca2+ signaling in folliculogenesis is supported by the observation that mice lacking the expression of Ca2+/calmodulin-dependent kinase IV in granulosa cells suffer abnormal follicular development and impaired fertility. RESULTS: Using immunofluorescence in frozen ovarian sections and confocal microscopy, we assessed the expression of high-voltage activated Ca2+ channel alpha subunits and InsP3 and ryanodine receptors in the postnatal period from 3 to 16 days. During the neonatal stage, oocytes from primordial and primary follicles show high expression of various Ca2+-selective channels, with granulosa and stroma cells expressing significantly less. These channels are likely involved in supporting Ca2+-dependent secretion of peptide growth factors. In contrast, during the early and late infantile periods, Ca2+ channel expression in the oocyte diminishes, increasing significantly in the granulosa and particularly in immature theca cells surrounding secondary follicles. CONCLUSIONS: The developmental switch of Ca2+ channel expression from the oocytes to the perifollicular cells likely reflects the vanishing role of the oocytes once granulosa and theca cells take control of folliculogenesis in response to gonadotropins acting on their receptors.


Asunto(s)
Folículo Ovárico , Ovario , Animales , Femenino , Gonadotropinas , Células de la Granulosa/metabolismo , Mamíferos , Ratones , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Células Tecales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA