Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 623(7988): 772-781, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968388

RESUMEN

Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.


Asunto(s)
Discapacidades del Desarrollo , Embrión de Mamíferos , Mutación , Fenotipo , Análisis de Expresión Génica de una Sola Célula , Animales , Ratones , Núcleo Celular/genética , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Mutación con Ganancia de Función , Genotipo , Mutación con Pérdida de Función , Modelos Genéticos , Modelos Animales de Enfermedad
2.
Cell ; 185(20): 3689-3704.e21, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179666

RESUMEN

Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.


Asunto(s)
Cromatina , Placenta , Animales , Factor de Unión a CCCTC/metabolismo , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Evolución Molecular , Femenino , Genoma , Mamíferos/metabolismo , Placenta/metabolismo , Embarazo , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nature ; 592(7852): 93-98, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33568816

RESUMEN

Long non-coding RNAs (lncRNAs) can be important components in gene-regulatory networks1, but the exact nature and extent of their involvement in human Mendelian disease is largely unknown. Here we show that genetic ablation of a lncRNA locus on human chromosome 2 causes a severe congenital limb malformation. We identified homozygous 27-63-kilobase deletions located 300 kilobases upstream of the engrailed-1 gene (EN1) in patients with a complex limb malformation featuring mesomelic shortening, syndactyly and ventral nails (dorsal dimelia). Re-engineering of the human deletions in mice resulted in a complete loss of En1 expression in the limb and a double dorsal-limb phenotype that recapitulates the human disease phenotype. Genome-wide transcriptome analysis in the developing mouse limb revealed a four-exon-long non-coding transcript within the deleted region, which we named Maenli. Functional dissection of the Maenli locus showed that its transcriptional activity is required for limb-specific En1 activation in cis, thereby fine-tuning the gene-regulatory networks controlling dorso-ventral polarity in the developing limb bud. Its loss results in the En1-related dorsal ventral limb phenotype, a subset of the full En1-associated phenotype. Our findings demonstrate that mutations involving lncRNA loci can result in human Mendelian disease.


Asunto(s)
Extremidades , Proteínas de Homeodominio/genética , Deformidades Congénitas de las Extremidades/genética , ARN Largo no Codificante/genética , Eliminación de Secuencia/genética , Transcripción Genética , Activación Transcripcional/genética , Animales , Línea Celular , Cromatina/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Transgénicos
4.
Mol Cell ; 74(6): 1110-1122, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226276

RESUMEN

During embryogenesis, precise gene transcription in space and time requires that distal enhancers and promoters communicate by physical proximity within gene regulatory landscapes. To achieve this, regulatory landscapes fold in nuclear space, creating complex 3D structures that influence enhancer-promoter communication and gene expression and that, when disrupted, can cause disease. Here, we provide an overview of how enhancers and promoters construct regulatory landscapes and how multiple scales of 3D chromatin structure sculpt their communication. We focus on emerging views of what enhancer-promoter contacts and chromatin domains physically represent and how two antagonistic fundamental forces-loop extrusion and homotypic attraction-likely form them. We also examine how these same forces spatially separate regulatory landscapes by functional state, thereby creating higher-order compartments that reconfigure during development to enable proper enhancer-promoter communication.


Asunto(s)
Cromatina/ultraestructura , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Genoma , Regiones Promotoras Genéticas , Transcripción Genética , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cromatina/metabolismo , Embrión de Mamíferos , Desarrollo Embrionario/genética , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Humanos , Conformación Molecular
5.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30602609

RESUMEN

Human norovirus infections are a major disease burden. In this study, we analyzed three new norovirus-specific Nanobodies that interacted with the prototype human norovirus (i.e., genogroup I genotype 1 [GI.1]). We showed that the Nanobodies bound on the side (Nano-7 and Nano-62) and top (Nano-94) of the capsid-protruding (P) domain using X-ray crystallography. Nano-7 and Nano-62 bound at a similar region on the P domain, but the orientations of these two Nanobodies clashed with the shell (S) domain and neighboring P domains on intact particles. This finding suggested that the P domains on the particles should shift in order for Nano-7 and Nano-62 to bind to intact particles. Interestingly, both Nano-7 and Nano-94 were capable of blocking norovirus virus-like particles (VLPs) from binding to histo-blood group antigens (HBGAs), which are important cofactors for norovirus infection. Previously, we showed that the GI.1 HBGA pocket could be blocked with the soluble human milk oligosaccharide 2-fucosyllactose (2'FL). In the current study, we showed that a combined treatment of Nano-7 or Nano-94 with 2'FL enhanced the blocking potential with an additive (Nano-7) or synergistic (Nano-94) effect. We also found that GII Nanobodies with 2'FL also enhanced inhibition. The Nanobody inhibition likely occurred by different mechanisms, including particle aggregation or particle disassembly, whereas 2'FL blocked the HBGA binding site. Overall, these new data showed that the positive effect of the addition of 2'FL was not limited to a single mode of action of Nanobodies or to a single norovirus genogroup.IMPORTANCE The discovery of vulnerable regions on norovirus particles is instrumental in the development of effective inhibitors, particularly for GI noroviruses that are genetically diverse. Analysis of these GI.1-specific Nanobodies has shown that similar to GII norovirus particles, the GI particles have vulnerable regions. The only known cofactor region, the HBGA binding pocket, represents the main target for inhibition. With a combination treatment, i.e., the addition of Nano-7 or Nano-94 with 2'FL, the effect of inhibition was increased. Therefore, combination drug treatments might offer a better approach to combat norovirus infections, especially since the GI genotypes are highly diverse and are continually changing the capsid landscape, and few conserved epitopes have so far been identified.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Norovirus/inmunología , Anticuerpos de Dominio Único/inmunología , Sitios de Unión/inmunología , Antígenos de Grupos Sanguíneos/inmunología , Cápside/inmunología , Proteínas de la Cápside/inmunología , Cristalografía por Rayos X/métodos , Epítopos/inmunología , Escherichia coli/virología , Unión Proteica/inmunología
6.
J Biol Chem ; 291(46): 24280-24292, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27694132

RESUMEN

StAR-related lipid transfer (START) domains are phospholipid- or sterol-binding modules that are present in many proteins. START domain-containing proteins (START proteins) play important functions in eukaryotic cells, including the redistribution of phospholipids to subcellular compartments and delivering sterols to the mitochondrion for steroid synthesis. How the activity of the START domain is regulated remains unknown for most of these proteins. The Plasmodium falciparum START protein PFA0210c (PF3D7_0104200) is a broad-spectrum phospholipid transfer protein that is conserved in all sequenced Plasmodium species and is most closely related to the mammalian START proteins STARD2 and STARD7. PFA0210c is unusual in that it contains a signal sequence and a PEXEL export motif that together mediate transfer of the protein from the parasite to the host erythrocyte. The protein also contains a C-terminal extension, which is very uncommon among mammalian START proteins. Whereas the biochemical properties of PFA0210c have been characterized, the function of the protein remains unknown. Here, we provide evidence that the unusual C-terminal extension negatively regulates phospholipid transfer activity. Furthermore, we use the genetically tractable Plasmodium knowlesi model and recently developed genetic technology in P. falciparum to show that the protein is essential for growth of the parasite during the clinically relevant asexual blood stage life cycle. Finally, we show that the regulation of phospholipid transfer by PFA0210c is required in vivo, and we identify a potential second regulatory domain. These findings provide insight into a novel mechanism of regulation of phospholipid transfer in vivo and may have important implications for the interaction of the malaria parasite with its host cell.


Asunto(s)
Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Transporte Biológico Activo/fisiología , Proteínas de Transferencia de Fosfolípidos/genética , Fosfolípidos/genética , Plasmodium falciparum/genética , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Dominios Proteicos , Proteínas Protozoarias/genética
7.
Oncotarget ; 6(25): 20742-3, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26369700

RESUMEN

Comment on: Yien Y, et al. TMEM14C is required for erythroid mitochondrial heme metabolism. J. Clin. Invest. 2014; 124:4294-4304.


Asunto(s)
Células Eritroides/metabolismo , Mitocondrias/metabolismo , Protoporfirinas/fisiología , Animales , Transporte Biológico , Hemo/química , Homeostasis , Humanos , Ratones , Análisis de Secuencia de ARN , Pez Cebra
8.
J Biol Chem ; 288(44): 31971-83, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043620

RESUMEN

Infection of erythrocytes by the human malaria parasite Plasmodium falciparum results in dramatic modifications to the host cell, including changes to its antigenic and transport properties and the de novo formation of membranous compartments within the erythrocyte cytosol. These parasite-induced structures are implicated in the transport of nutrients, metabolic products, and parasite proteins, as well as in parasite virulence. However, very few of the parasite effector proteins that underlie remodeling of the host erythrocyte are functionally characterized. Using bioinformatic examination and modeling, we have found that the exported P. falciparum protein PFA0210c belongs to the START domain family, members of which mediate transfer of phospholipids, ceramide, or fatty acids between membranes. In vitro phospholipid transfer assays using recombinant PFA0210 confirmed that it can transfer phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin between phospholipid vesicles. Furthermore, assays using HL60 cells containing radiolabeled phospholipids indicated that orthologs of PFA0210c can also transfer phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine. Biochemical and immunochemical analysis showed that PFA0210c associates with membranes in infected erythrocytes at mature stages of intracellular parasite growth. Localization studies in live parasites revealed that the protein is present in the parasitophorous vacuole during growth and is later recruited to organelles in the parasite. Together these data suggest that PFA0210c plays a role in the formation of the membranous structures and nutrient phospholipid transfer in the malaria-parasitized erythrocyte.


Asunto(s)
Membrana Celular/metabolismo , Eritrocitos/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Transporte Biológico Activo , Membrana Celular/genética , Eritrocitos/parasitología , Células HL-60 , Humanos , Lípidos de la Membrana/genética , Proteínas de Transferencia de Fosfolípidos/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Vacuolas/metabolismo , Vacuolas/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA