RESUMEN
[This corrects the article DOI: 10.3389/fgene.2023.1122893.].
RESUMEN
Background: Anderson-Fabry disease (AFD) is an X-linked disease that results from reduced activity of the enzyme galactosidase alpha (GLA). When the GLA gene sequence is altered by mutations that alter the normal DNA sequence, variants of the alpha-galactosidase A enzyme are produced, which may or may not function. These mutations are responsible for Fabry disease, and to date, over 800 different mutations of the gene have been described in patients with Anderson-Fabry disease. In this case, we report the case of a woman who is the sole family member with this type of mutation. Case presentation: We report a case of a 52-year-old woman with end-stage chronic kidney disease in dialysis treatment. The patient's alpha-galactosidase activity was 6.6 nmol/ml/h in whole blood, and lyso-GB3 levels were 11.45 nmol/L (normal range < 2.3 nmol/L). Alpha-galactosidase A gene sequence analysis revealed a pathogenic variant of c.947dupT in exon 6, leading to the p. I317NfsTer16 amino acid substitution. The genetic analysis did not detect the same mutation in any of the other screened family members. Conclusion: The international Fabry disease genotype-phenotype database (dbFGP) reports a pathogenic variant c.947dupT in exon 6 that is probably associated with a classical phenotype of Fabry disease. In this case report, we report the case of a woman who is the sole family member with this type of pathogenic variant. Similar situations have not been described in the literature for this pathogenic variant, and it represents an important case of inter- and intrafamilial variability in patients with Fabry disease. The literature shows that de novo pathogenic variants are frequently found in the context of Fabry disease.
RESUMEN
In recent years, the field of venous thromboembolism has undergone numerous innovations, starting from the recent discoveries on the role of biomarkers, passing through the role of metabolomics in expanding our knowledge on pathogenic mechanisms, which have opened up new therapeutic targets. A variety of studies have contributed to characterizing the metabolic phenotype that occurs in venous thromboembolism, identifying numerous pathways that are altered in this setting. Among these pathways are the metabolism of carnitine, tryptophan, purine, and fatty acids. Furthermore, new evidence has emerged with the recent COVID-19 pandemic. Hypercoagulability phenomena induced by this viral infection appear to be related to altered von Willebrand factor activity, alteration of the renin-angiotensin-aldosterone system, and dysregulation of both innate and adaptive immunity. This is the first literature review that brings together the most recent evidence regarding biomarkers, metabolomics, and COVID-19 in the field of venous thromboembolism, while also mentioning current therapeutic protocols.
Asunto(s)
COVID-19 , Tromboembolia Venosa , Humanos , Pandemias , Metabolómica , BiomarcadoresRESUMEN
BACKGROUND: Diabetic foot is a significant cause of morbidity in diabetic patients, with a rate that is approximately twice that of patients without foot ulcers. "Metabolic memory" represents the epigenetic changes induced by chronic hyperglycaemia, despite the correction of the glucose levels themselves. These epigenetic modifications appear to perpetuate the damage caused by persistently elevated glucose levels even in their absence, acting at various levels, mostly affecting the molecular processes of diabetic ulcer healing. METHODS: The aim of our cross-sectional study was to analyse a cohort of patients with diabetes with and without lower limb ulcers. We examined the effects of epigenetic changes on miRNA 126, 305, and 217 expression and the frequency of the SNPs of genes encoding inflammatory molecules (e.g., IL-6 and TNF-alpha) and their correlations with serum levels of proangiogenic molecules (e.g., ENOS, VEGF and HIF-1alpha) and several adipokines as well as with endothelial dysfunction, assessed noninvasively by reactive hyperaemia peripheral artery tonometry. Between March 2021 and June 2022, 110 patients were enrolled into the study: 50 diabetic patients with diabetic foot injuries, 40 diabetic patients without ulcerative complications and 20 nondiabetic patients as the control group. RESULTS: Diabetic subjects with lower limb ulcerative lesions exhibited higher levels of inflammatory cytokines, such as VEGF (191.40 ± 200 pg/mL vs. 98.27 ± 56.92 pg/mL vs. 71.01 ± 52.96 pg/mL; p = 0.22), HIF-1alpha (40.18 ± 10.80 ng/mL vs. 33.50 ± 6.16 ng/mL vs. 33.85 ± 6.84 ng/mL; p = 0.10), and Gremlin-1 (1.72 ± 0.512 ng/mL vs. 1.31 ± 0.21 ng/mL vs. 1.11 ± 0.19 ng/mL; p < 0.0005), than those without lower limb ulcers and healthy controls. Furthermore, we observed that miR-217-5p and miR-503-5p were 2.19-fold (p < 0.05) and 6.21-fold (p = 0.001) more highly expressed in diabetic foot patients than in healthy controls, respectively. Additionally, diabetic patients without lower limb ulcerative complications showed 2.41-fold (p = 0) and 2.24-fold (p = 0.029) higher expression of miR-217-5p and miR-503-5p, respectively, than healthy controls. Finally, diabetic patients with and without ulcerative complications of the lower limbs showed higher expression of the VEGFC2578A CC polymorphism (p = 0.001) and lower expression of the VEGFC2578A AC polymorphism (p < 0.005) than the healthy control population. We observed a significant increase in Gremlin-1 levels in patients with diabetic foot, suggesting that this inflammatory adipokine may serve as a predictive marker for the diagnosis of diabetic foot. CONCLUSIONS: Our results highlighted that patients with diabetic foot showed predominant expression of the VEGF C2578A CC polymorphism and reduced expression of the AC allele. Additionally, we found an overexpression of miR-217-5p and miR-503-5p in diabetic patients with and without diabetic foot syndrome compared with healthy controls. These results align with those reported in the literature, in which the overexpression of miR-217-5p and miR-503-5p in the context of diabetic foot is reported. The identification of these epigenetic modifications could therefore be helpful in the early diagnosis of diabetic foot and the treatment of risk factors. However, further studies are necessary to confirm this hypothesis.
Asunto(s)
Diabetes Mellitus , Pie Diabético , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Pie Diabético/diagnóstico , Pie Diabético/genética , Polimorfismo de Nucleótido Simple , Úlcera , Factor A de Crecimiento Endotelial Vascular/genética , Estudios Transversales , GlucosaRESUMEN
Fabry disease (FD) is a recessive monogenic disease linked to chromosome X due to more than two hundred mutations in the alfa-galactosidase A (GLA) gene. Modifications of the GLA gene may cause the progressive accumulation of globotriaosylceramide (Gb3) and its deacylated form, globotriasylsphingosine (lyso-Gb3), in lysosomes of several types of cells of the heart, kidneys, skin, eyes, peripheral and central nervous system (not clearly and fully demonstrated), and gut with different and pleiotropic clinical symptoms. Among the main symptoms are acroparesthesias and pain crisis (involving the peripheral nervous system), hypohidrosis, abdominal pain, gut motility abnormalities (involving the autonomic system), and finally, cerebrovascular ischemic events due to macrovascular involvement (TIA and stroke) and lacunar strokes and white matter abnormalities due to a small vessel disease (SVS). Gb3 lysosomal accumulation causes cytoplasmatic disruption and subsequent cell death. Additional consequences of Gb3 deposits are inflammatory processes, abnormalities of leukocyte function, and impaired trafficking of some types of immune cells, including lymphocytes, monocytes, CD8+ cells, B cells, and dendritic cells. The involvement of inflammation in AFD pathogenesis conflicts with the reported poor correlation between CRP levels as an inflammation marker and clinical scores such as the Mainz Severity Score Index (MSSI). Also, some authors have suggested an autoimmune reaction is involved in the disease's pathogenetic mechanism after the α-galactosidase A deficiency. Some studies have reported a high degree of neuronal apoptosis inhibiting protein as a critical anti-apoptotic mediator in children with Fabry disease compared to healthy controls. Notably, this apoptotic upregulation did not change after treatment with enzymatic replacement therapy (ERT), with a further upregulation of the apoptosis-inducing factor after ERT started. Gb3-accumulation has been reported to increase the degree of oxidative stress indexes and the production of reactive oxygen species (ROS). Lipids and proteins have been reported as oxidized and not functioning. Thus, neurological complications are linked to different pathogenetic molecular mechanisms. Progressive accumulation of Gb3 represents a possible pathogenetic event of peripheral nerve involvement. In contrast, central nervous system participation in the clinical setting of cerebrovascular ischemic events seems to be due to the epitheliopathy of Anderson-Fabry disease with lacunar lesions and white matter hyperintensities (WMHs). In this review manuscript, we revised molecular mechanisms of peripheral and central neurological complications of Anderson-Fabry Disease. The management of Fabry disease may be improved by the identification of biomarkers that reflect the clinical course, severity, and progression of the disease. Intensive research on biomarkers has been conducted over the years to detect novel markers that may potentially be used in clinical practice as a screening tool, in the context of the diagnostic process and as an indicator of response to treatment. Recent proteomic or metabolomic studies are in progress, investigating plasma proteome profiles in Fabry patients: these assessments may be useful to characterize the molecular pathology of the disease, improve the diagnostic process, and monitor the response to treatment.
Asunto(s)
Enfermedad de Fabry , Niño , Humanos , Enfermedad de Fabry/complicaciones , Enfermedad de Fabry/genética , Proteómica , Sistema Nervioso Periférico , Biomarcadores , InflamaciónRESUMEN
Human nutrition is a relatively new science based on biochemistry and the effects of food constituents. Ancient medicine considered many foods as remedies for physical performance or the treatment of diseases and, since ancient times, especially Greek, Asian and pre-Christian cultures similarly thought that they had beneficial effects on health, while others believed some foods were capable of causing illness. Hippocrates described the food as a form of medicine and stated that a balanced diet could help individuals stay healthy. Understanding molecular nutrition, the interaction between nutrients and DNA, and obtaining specific biomarkers could help formulate a diet in which food is not only a food but also a drug. Therefore, this study aims to analyze the role of the Mediterranean diet and olive oil on cardiovascular risk and to identify their influence from the genetic and epigenetic point of view to understand their possible protective effects.
Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Dieta Mediterránea , Humanos , Aceite de Oliva , Epigénesis Genética , Grecia , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/prevención & controlRESUMEN
Cerebral small vessel disease (CSVD) is one of the most important causes of vascular dementia. Immunosenescence and inflammatory response, with the involvement of the cerebrovascular system, constitute the basis of this disease. Immunosenescence identifies a condition of deterioration of the immune organs and consequent dysregulation of the immune response caused by cellular senescence, which exposes older adults to a greater vulnerability. A low-grade chronic inflammation status also accompanies it without overt infections, an "inflammaging" condition. The correlation between immunosenescence and inflammaging is fundamental in understanding the pathogenesis of age-related CSVD (ArCSVD). The production of inflammatory mediators caused by inflammaging promotes cellular senescence and the decrease of the adaptive immune response. Vice versa, the depletion of the adaptive immune mechanisms favours the stimulation of the innate immune system and the production of inflammatory mediators leading to inflammaging. Furthermore, endothelial dysfunction, chronic inflammation promoted by senescent innate immune cells, oxidative stress and impairment of microglia functions constitute, therefore, the framework within which small vessel disease develops: it is a concatenation of molecular events that promotes the decline of the central nervous system and cognitive functions slowly and progressively. Because the causative molecular mechanisms have not yet been fully elucidated, the road of scientific research is stretched in this direction, seeking to discover other aberrant processes and ensure therapeutic tools able to enhance the life expectancy of people affected by ArCSVD. Although the concept of CSVD is broader, this manuscript focuses on describing the neurobiological basis and immune system alterations behind cerebral aging. Furthermore, the purpose of our work is to detect patients with CSVD at an early stage, through the evaluation of precocious MRI changes and serum markers of inflammation, to treat untimely risk factors that influence the burden and the worsening of the cerebral disease.
Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Inmunosenescencia , Inmunidad Adaptativa , Anciano , Humanos , Inflamación , Mediadores de InflamaciónRESUMEN
Migraine is a hereditary disease, usually one-sided, sometimes bilateral. It is characterized by moderate to severe pain, which worsens with physical activity and may be associated with nausea and vomiting, may be accompanied by photophobia and phonophobia. The disorder can occur at any time of the day and can last from 4 to 72 h, with and without aura. The pathogenic mechanism is unclear, but extensive preclinical and clinical studies are ongoing. According to electrophysiology and imaging studies, many brain areas are involved, such as cerebral cortex, thalamus, hypothalamus, and brainstem. The activation of the trigeminovascular system has a key role in the headache phase. There also appears to be a genetic basis behind the development of migraine. Numerous alterations have been identified, and in addition to the genetic cause, there is also a close association with the surrounding environment, as if on the one hand, the genetic alterations may be responsible for the onset of migraine, on the other, the environmental factors seem to be more strongly associated with exacerbations. This review is an analysis of neurophysiological mechanisms, neuropeptide activity, and genetic alterations that play a fundamental role in choosing the best therapeutic strategy. To date, the goal is to create a therapy that is as personalized as possible, and for this reason, steps forward have been made in the pharmacological field in order to identify new therapeutic strategies for both acute treatment and prophylaxis.
Asunto(s)
Trastornos Migrañosos , Encéfalo , Tronco Encefálico , Cefalea , Humanos , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/terapia , NáuseaRESUMEN
Anderson-Fabry disease (AFD) is a rare disease with an incidenceof approximately 1:117,000 male births. Lysosomal accumulation of globotriaosylceramide (Gb3) is the element characterizing Fabry disease due to a hereditary deficiency α-galactosidase A (GLA) enzyme. The accumulation of Gb3 causes lysosomal dysfunction that compromises cell signaling pathways. Deposition of sphingolipids occurs in the autonomic nervous system, dorsal root ganglia, kidney epithelial cells, vascular system cells, and myocardial cells, resulting in organ failure. This manuscript will review the molecular pathogenetic pathways involved in Anderson-Fabry disease and in its organ damage. Some studies reported that inhibition of mitochondrial function and energy metabolism plays a significant role in AFD cardiomyopathy and in kidney disease of AFD patients. Furthermore, mitochondrial dysfunction has been reported as linked to the dysregulation of the autophagy-lysosomal pathway which inhibits the mechanistic target of rapamycin kinase (mTOR) mediated control of mitochondrial metabolism in AFD cells. Cerebrovascular complications due to AFD are caused by cerebral micro vessel stenosis. These are caused by wall thickening resulting from the intramural accumulation of glycolipids, luminal occlusion or thrombosis. Other pathogenetic mechanisms involved in organ damage linked to Gb3 accumulation are endocytosis and lysosomal degradation of endothelial calcium-activated intermediate-conductance potassium ion channel 3.1 (KCa3.1) via a clathrin-dependent process. This process represents a crucial event in endothelial dysfunction. Several studies have identified the deacylated form of Gb3, globotriaosylsphingosine (Lyso-Gb3), as the main catabolite that increases in plasma and urine in patients with AFD. The mean concentrations of Gb3 in all organs and plasma of Galactosidase A knockout mice were significantly higher than those of wild-type mice. The distributions of Gb3 isoforms vary from organ to organ. Various Gb3 isoforms were observed mainly in the kidneys, and kidney-specific Gb3 isoforms were hydroxylated. Furthermore, the action of Gb3 on the KCa3.1 channel suggests a possible contribution of this interaction to the Fabry disease process, as this channel is expressed in various cells, including endothelial cells, fibroblasts, smooth muscle cells in proliferation, microglia, and lymphocytes. These molecular pathways could be considered a potential therapeutic target to correct the enzyme in addition to the traditional enzyme replacement therapies (ERT) or drug chaperone therapy.