Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(35)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34452914

RESUMEN

Body temperature homeostasis is essential and reliant upon the integration of outputs from multiple classes of cooling- and warming-responsive cells. The computations that integrate these outputs are not understood. Here, we discover a set of warming cells (WCs) and show that the outputs of these WCs combine with previously described cooling cells (CCs) in a cross-inhibition computation to drive thermal homeostasis in larval Drosophila WCs and CCs detect temperature changes using overlapping combinations of ionotropic receptors: Ir68a, Ir93a, and Ir25a for WCs and Ir21a, Ir93a, and Ir25a for CCs. WCs mediate avoidance to warming while cross-inhibiting avoidance to cooling, and CCs mediate avoidance to cooling while cross-inhibiting avoidance to warming. Ambient temperature-dependent regulation of the strength of WC- and CC-mediated cross-inhibition keeps larvae near their homeostatic set point. Using neurophysiology, quantitative behavioral analysis, and connectomics, we demonstrate how flexible integration between warming and cooling pathways can orchestrate homeostatic thermoregulation.

2.
J Comp Neurol ; 525(18): 3865-3889, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28842919

RESUMEN

In Drosophila melanogaster larvae, the prime site of external taste reception is the terminal organ (TO). Though investigation on the TO's implications in taste perception has been expanding rapidly, the sensilla of the TO have been essentially unexplored. In this study, we performed a systematic anatomical and molecular analysis of the TO. We precisely define morphological types of TO sensilla taking advantage of volume electron microscopy and 3D image analysis. We corroborate the presence of five external types of sensilla: papilla, pit, spot, knob, and modified papilla. Detailed 3D analysis of their structural organization allowed a finer discrimination into subtypes. We classify three subtypes of papilla and pit sensilla, respectively, and two subtypes of knob sensilla. Further, we determine the repertoire of receptor genes for each sensillum by analyzing GAL4 driver lines of Ir, Gr, Ppk, and Trp receptor genes. We construct a map of the TO, in which the receptor genes are mapped to neurons of individual sensilla. While modified papillum and spot sensilla are not labeled by any GAL4 driver, neurons of the pit, papilla, and knob type are labeled by partially overlapping but different subsets of GAL4 driver lines of the Ir, Gr, and Ppk gene family. The results suggest that pit, papilla and knob sensilla act in contact chemosensation. However, they likely do these employing different stimulus transduction mechanisms to sense the diverse chemicals of their environment.


Asunto(s)
Sensilos/citología , Células Receptoras Sensoriales/fisiología , Gusto/fisiología , Animales , Animales Modificados Genéticamente , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Imagenología Tridimensional , Larva/metabolismo , Larva/ultraestructura , Microscopía Confocal , Microscopía Electrónica , Sensilos/diagnóstico por imagen , Sensilos/embriología , Sensilos/crecimiento & desarrollo , Células Receptoras Sensoriales/ultraestructura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Front Cell Neurosci ; 10: 193, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27555807

RESUMEN

The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal, and ventral organ). However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative co-receptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s). This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviors.

4.
Artículo en Inglés | MEDLINE | ID: mdl-26528147

RESUMEN

The sense of taste allows animals to detect chemical substances in their environment to initiate appropriate behaviors: to find food or a mate, to avoid hostile environments and predators. Drosophila larvae are a promising model organism to study gustation. Their simple nervous system triggers stereotypic behavioral responses, and the coding of taste can be studied by genetic tools at the single cell level. This review briefly summarizes recent progress on how taste information is sensed and processed by larval cephalic and pharyngeal sense organs. The focus lies on several studies, which revealed cellular and molecular mechanisms required to process sugar, salt, and bitter substances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA