RESUMEN
We use classical density functional theory (DFT) to model solvation interactions between hydrophobic surfaces, which we show to be characterized by depletion attraction at small surface to surface separations and a slowly decaying bipower law interaction at large separations. The solvation interaction originates from van der Waals (vdW) and Coulombic interactions between molecules in the polar solvent, e.g., water, and from the molecules thermal motion and finite volume. We investigate model hydrophobic surfaces represented by bubbles and nonpolar solids, e.g., aliphatic particles, and calculate in a DFT fashion the distribution of molecules in the interlaying solvent between two such surfaces and the hydrophobic excess force resulting from it. The interactions are largely attractive, which is well-known in measurement, albeit vdW attraction between molecules in solids and in the solvent may cause repulsion at certain interface to interface separations. We commence our analysis by suggesting an asymptotic analytical bipower law expression for the solvation interaction at large separations. Thereafter we present a full numerical solution, which is in good agreement with the analytical prediction and further explores the interaction at small surface to surface separations. Our theoretical results yield adhesion energies which agree with previous experiments.
RESUMEN
Single-cell RNA sequencing experiments produce data useful to identify different cell types, including uncharacterized and rare ones. This enables us to study the specific functional roles of these cells in different microenvironments and contexts. After identifying a (novel) cell type of interest, it is essential to build succinct marker panels, composed of a few genes referring to cell surface proteins and clusters of differentiation molecules, able to discriminate the desired cells from the other cell populations. In this work, we propose a fully-automatic framework called MAGNETO, which can help construct optimal marker panels starting from a single-cell gene expression matrix and a cell type identity for each cell. MAGNETO builds effective marker panels solving a tailored bi-objective optimization problem, where the first objective regards the identification of the genes able to isolate a specific cell type, while the second conflicting objective concerns the minimization of the total number of genes included in the panel. Our results on three public datasets show that MAGNETO can identify marker panels that identify the cell populations of interest better than state-of-the-art approaches. Finally, by fine-tuning MAGNETO, our results demonstrate that it is possible to obtain marker panels with different specificity levels.
Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos , Diferenciación CelularRESUMEN
Assay for transposase-accessible chromatin (ATAC) and chromatin immunoprecipitation (ChIP), coupled with next-generation sequencing (NGS), have revolutionized the study of gene regulation. A lack of standardization in the analysis of the highly dimensional datasets generated by these techniques has made reproducibility difficult to achieve, leading to discrepancies in the published, processed data. Part of this problem is due to the diverse range of bioinformatic tools available for the analysis of these types of data. Secondly, a number of different bioinformatic tools are required sequentially to convert raw data into a fully processed and interpretable output, and these tools require varying levels of computational skills. Furthermore, there are many options for quality control that are not uniformly employed during data processing. We address these issues with a complete assay for transposase-accessible chromatin sequencing (ATAC-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) upstream pipeline (CATCH-UP), an easy-to-use, Python-based pipeline for the analysis of bulk ChIP-seq and ATAC-seq datasets from raw fastq files to visualizable bigwig tracks and peaks calls. This pipeline is simple to install and run, requiring minimal computational knowledge. The pipeline is modular, scalable, and parallelizable on various computing infrastructures, allowing for easy reporting of methodology to enable reproducible analysis of novel or published datasets.
Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN/métodos , Reproducibilidad de los Resultados , Inmunoprecipitación de Cromatina/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Cromatina/genética , TransposasasRESUMEN
Aberrant enhancer activation is a key mechanism driving oncogene expression in many cancers. While much is known about the regulation of larger chromosome domains in eukaryotes, the details of enhancer-promoter interactions remain poorly understood. Recent work suggests co-activators like BRD4 and Mediator have little impact on enhancer-promoter interactions. In leukemias controlled by the MLL-AF4 fusion protein, we use the ultra-high resolution technique Micro-Capture-C (MCC) to show that MLL-AF4 binding promotes broad, high-density regions of enhancer-promoter interactions at a subset of key targets. These enhancers are enriched for transcription elongation factors like PAF1C and FACT, and the loss of these factors abolishes enhancer-promoter contact. This work not only provides an additional model for how MLL-AF4 is able to drive high levels of transcription at key genes in leukemia but also suggests a more general model linking enhancer-promoter crosstalk and transcription elongation.
Asunto(s)
Leucemia , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Factores de Transcripción/genética , Secuencias Reguladoras de Ácidos Nucleicos , Leucemia/genética , Regiones Promotoras Genéticas/genética , Proteínas de Ciclo Celular , Proteínas de Fusión Oncogénica/genética , Proteína de la Leucemia Mieloide-Linfoide/genéticaRESUMEN
Understanding clonal evolution and cancer development requires experimental approaches for characterizing the consequences of somatic mutations on gene regulation. However, no methods currently exist that efficiently link high-content chromatin accessibility with high-confidence genotyping in single cells. To address this, we developed Genotyping with the Assay for Transposase-Accessible Chromatin (GTAC), enabling accurate mutation detection at multiple amplified loci, coupled with robust chromatin accessibility readout. We applied GTAC to primary acute myeloid leukemia, obtaining high-quality chromatin accessibility profiles and clonal identities for multiple mutations in 88% of cells. We traced chromatin variation throughout clonal evolution, showing the restriction of different clones to distinct differentiation stages. Furthermore, we identified switches in transcription factor motif accessibility associated with a specific combination of driver mutations, which biased transformed progenitors toward a leukemia stem cell-like chromatin state. GTAC is a powerful tool to study clonal heterogeneity across a wide spectrum of pre-malignant and neoplastic conditions.
Asunto(s)
Cromatina , Leucemia Mieloide Aguda , Humanos , Transposasas/genética , Transposasas/metabolismo , Genotipo , Genómica , Regulación de la Expresión GénicaRESUMEN
We developed an analytical theoretical method to determine the microscopical structure of weakly to moderately sheared colloidal suspensions in dilute conditions. The microstructure is described by the static structure factor, obtained by solving the stationary two-body Smoluchowski advection-diffusion equation. The singularly perturbed partial differential equation problem is solved by performing an angular averaging over the extensional and compressing sectors and by the rigorous application of boundary-layer theory (intermediate asymptotics). This allows us to expand the solution to a higher order in Péclet with respect to previous methods. The scheme is independent of the type of interaction potential. We apply it to the example of charge-stabilized colloidal particles interacting via the repulsive Yukawa potential and study the distortion of the structure factor. It is predicted that the distortion is larger at small wave vectors k and its dependence on Pe is a simple power law. At increasing Pe, the main peak of the structure factor displays a broadening and shift toward lower k in the extensional sectors, which indicates shear-induced spreading out of particle correlations and neighbor particles locally being dragged away from the reference one. In the compressing sectors, instead, a narrowing and shift toward high k is predicted, reflecting shear-induced ordering near contact and concomitant depletion in the medium range. An overall narrowing of the peak is also predicted for the structure factor averaged over the whole solid angle. Calculations are also performed for hard spheres, showing good overall agreement with experimental data. It is also shown that the shear-induced structure factor distortion is orders of magnitude larger for the Yukawa repulsion than for the hard spheres.
RESUMEN
Regulation of hematopoiesis during human development remains poorly defined. Here we applied single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to over 8,000 human immunophenotypic blood cells from fetal liver and bone marrow. We inferred their differentiation trajectory and identified three highly proliferative oligopotent progenitor populations downstream of hematopoietic stem cells (HSCs)/multipotent progenitors (MPPs). Along this trajectory, we observed opposing patterns of chromatin accessibility and differentiation that coincided with dynamic changes in the activity of distinct lineage-specific transcription factors. Integrative analysis of chromatin accessibility and gene expression revealed extensive epigenetic but not transcriptional priming of HSCs/MPPs prior to their lineage commitment. Finally, we refined and functionally validated the sorting strategy for the HSCs/MPPs and achieved around 90% enrichment. Our study provides a useful framework for future investigation of human developmental hematopoiesis in the context of blood pathologies and regenerative medicine.