Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Med Chem ; 62(6): 3135-3146, 2019 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-30830766

RESUMEN

Cryptosporidium is a leading cause of pediatric diarrhea worldwide. Currently, there is neither a vaccine nor a consistently effective drug available for this disease. Selective 5-aminopyrazole-4-carboxamide-based bumped-kinase inhibitors (BKIs) are effective in both in vitro and in vivo models of Cryptosporidium parvum. Potential cardiotoxicity in some BKIs led to the continued exploration of the 5-aminopyrazole-4-carboxamide scaffold to find safe and effective drug candidates for Cryptosporidium. A series of newly designed BKIs were tested for efficacy against C. parvum using in vitro and in vivo (mouse infection model) assays and safety issues. Compound 6 (BKI 1708) was found to be efficacious at 8 mg/kg dosed once daily (QD) for 5 days with no observable signs of toxicity up to 200 mg/kg dosed QD for 7 days. Compound 15 (BKI 1770) was found to be efficacious at 30 mg/kg dosed twice daily (BID) for 5 days with no observable signs of toxicity up to 300 mg/kg dosed QD for 7 days. Compounds 6 and 15 are promising preclinical leads for cryptosporidiosis therapy with acceptable safety parameters and efficacy in the mouse model of cryptosporidiosis.


Asunto(s)
Antiprotozoarios/uso terapéutico , Ácidos Carboxílicos/química , Criptosporidiosis/tratamiento farmacológico , Pirazoles/farmacología , Animales , Antiprotozoarios/farmacocinética , Línea Celular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Desarrollo de Medicamentos , Humanos , Interferón gamma/genética , Ratones , Ratones Noqueados , Pirazoles/química , Pirazoles/farmacocinética
2.
J Infect Dis ; 219(9): 1464-1473, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30423128

RESUMEN

Bumped kinase inhibitors (BKIs) have been shown to be potent inhibitors of Toxoplasma gondii calcium-dependent protein kinase 1. Pyrazolopyrimidine and 5-aminopyrazole-4-carboxamide scaffold-based BKIs are effective in acute and chronic experimental models of toxoplasmosis. Through further exploration of these 2 scaffolds and a new pyrrolopyrimidine scaffold, additional compounds have been identified that are extremely effective against acute experimental toxoplasmosis. The in vivo efficacy of these BKIs demonstrates that the cyclopropyloxynaphthyl, cyclopropyloxyquinoline, and 2-ethoxyquinolin-6-yl substituents are associated with efficacy across scaffolds. In addition, a broad range of plasma concentrations after oral dosing resulted from small structural changes to the BKIs. These select BKIs include anti-Toxoplasma compounds that are effective against acute experimental toxoplasmosis and are not toxic in human cell assays, nor to mice when administered for therapy. The BKIs described here are promising late leads for improving anti-Toxoplasma therapy.


Asunto(s)
Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Protozoarias/antagonistas & inhibidores , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Toxoplasmosis Animal/tratamiento farmacológico , Toxoplasmosis Cerebral/tratamiento farmacológico , Administración Oral , Animales , Área Bajo la Curva , Femenino , Técnicas In Vitro , Ratones , Inhibidores de Proteínas Quinasas/sangre , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/sangre , Pirazoles/farmacología , Pirimidinas/sangre , Pirimidinas/farmacología
3.
Int J Parasitol Drugs Drug Resist ; 8(1): 112-124, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29501973

RESUMEN

Neospora caninum is one of the main causes of abortion in cattle, and recent studies have highlighted its relevance as an abortifacient in small ruminants. Vaccines or drugs for the control of neosporosis are lacking. Bumped kinase inhibitors (BKIs), which are ATP-competitive inhibitors of calcium dependent protein kinase 1 (CDPK1), were shown to be highly efficacious against several apicomplexan parasites in vitro and in laboratory animal models. We here present the pharmacokinetics, safety and efficacy of BKI-1553 in pregnant ewes and foetuses using a pregnant sheep model of N. caninum infection. BKI-1553 showed exposure in pregnant ewes with trough concentrations of approximately 4 µM, and of 1  µM in foetuses. Subcutaneous BKI-1553 administration increased rectal temperatures shortly after treatment, and resulted in dermal nodules triggering a slight monocytosis after repeated doses at short intervals. BKI-1553 treatment decreased fever in infected pregnant ewes already after two applications, resulted in a 37-50% reduction in foetal mortality, and modulated immune responses; IFNγ levels were increased early after infection and IgG levels were reduced subsequently. N. caninum was abundantly found in placental tissues; however, parasite detection in foetal brain tissue decreased from 94% in the infected/untreated group to 69-71% in the treated groups. In summary, BKI-1553 confers partial protection against abortion in a ruminant experimental model of N. caninum infection during pregnancy. In addition, reduced parasite detection, parasite load and lesions in foetal brains were observed.


Asunto(s)
Coccidiosis/tratamiento farmacológico , Estadios del Ciclo de Vida/efectos de los fármacos , Neospora/efectos de los fármacos , Pirazoles/efectos adversos , Pirazoles/uso terapéutico , Pirimidinas/efectos adversos , Pirimidinas/uso terapéutico , Aborto Veterinario/prevención & control , Animales , Encéfalo/efectos de los fármacos , Encéfalo/parasitología , Coccidiosis/inmunología , Coccidiosis/parasitología , Femenino , Feto/efectos de los fármacos , Fiebre/inducido químicamente , Inmunoglobulina G/sangre , Interferón gamma/sangre , Neospora/inmunología , Neospora/aislamiento & purificación , Carga de Parásitos , Embarazo , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/administración & dosificación , Pirazoles/farmacocinética , Pirimidinas/administración & dosificación , Pirimidinas/farmacocinética , Ovinos
4.
Int J Parasitol ; 47(12): 753-763, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28899690

RESUMEN

Improvements have been made to the safety and efficacy of bumped kinase inhibitors, and they are advancing toward human and animal use for treatment of cryptosporidiosis. As the understanding of bumped kinase inhibitor pharmacodynamics for cryptosporidiosis therapy has increased, it has become clear that better compounds for efficacy do not necessarily require substantial systemic exposure. We now have a bumped kinase inhibitor with reduced systemic exposure, acceptable safety parameters, and efficacy in both the mouse and newborn calf models of cryptosporidiosis. Potential cardiotoxicity is the limiting safety parameter to monitor for this bumped kinase inhibitor. This compound is a promising pre-clinical lead for cryptosporidiosis therapy in animals and humans.


Asunto(s)
Criptosporidiosis/tratamiento farmacológico , Cryptosporidium parvum/efectos de los fármacos , Inhibidores de Proteínas Quinasas/uso terapéutico , Administración Oral , Animales , Animales Recién Nacidos , Bovinos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Corazón/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Interferón gamma/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Pruebas de Mutagenicidad , Embarazo , Unión Proteica , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/sangre , Inhibidores de Proteínas Quinasas/toxicidad , Seguridad
5.
J Infect Dis ; 215(8): 1275-1284, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28329187

RESUMEN

Bumped kinase inhibitors (BKIs) of Cryptosporidium parvum calcium-dependent protein kinase 1 (CpCDPK1) are leading candidates for treatment of cryptosporidiosis-associated diarrhea. Potential cardiotoxicity related to anti-human ether-à-go-go potassium channel (hERG) activity of the first-generation anti-Cryptosporidium BKIs triggered further testing for efficacy. A luminescence assay adapted for high-throughput screening was used to measure inhibitory activities of BKIs against C. parvum in vitro. Furthermore, neonatal and interferon γ knockout mouse models of C. parvum infection identified BKIs with in vivo activity. Additional iterative experiments for optimum dosing and selecting BKIs with minimum levels of hERG activity and frequencies of other safety liabilities included those that investigated mammalian cell cytotoxicity, C. parvum proliferation inhibition in vitro, anti-human Src inhibition, hERG activity, in vivo pharmacokinetic data, and efficacy in other mouse models. Findings of this study suggest that fecal concentrations greater than parasite inhibitory concentrations correlate best with effective therapy in the mouse model of cryptosporidiosis, but a more refined model for efficacy is needed.


Asunto(s)
Antiprotozoarios/administración & dosificación , Criptosporidiosis/tratamiento farmacológico , Cryptosporidium parvum/efectos de los fármacos , Inhibidores de Proteínas Quinasas/administración & dosificación , Administración Oral , Animales , Diarrea/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Noqueados , Ratones SCID
6.
ACS Infect Dis ; 3(1): 34-44, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-27798837

RESUMEN

Plasmodium falciparum (Pf) prolyl-tRNA synthetase (ProRS) is one of the few chemical-genetically validated drug targets for malaria, yet highly selective inhibitors have not been described. In this paper, approximately 40,000 compounds were screened to identify compounds that selectively inhibit PfProRS enzyme activity versus Homo sapiens (Hs) ProRS. X-ray crystallography structures were solved for apo, as well as substrate- and inhibitor-bound forms of PfProRS. We identified two new inhibitors of PfProRS that bind outside the active site. These two allosteric inhibitors showed >100 times specificity for PfProRS compared to HsProRS, demonstrating this class of compounds could overcome the toxicity related to HsProRS inhibition by halofuginone and its analogues. Initial medicinal chemistry was performed on one of the two compounds, guided by the cocrystallography of the compound with PfProRS, and the results can instruct future medicinal chemistry work to optimize these promising new leads for drug development against malaria.


Asunto(s)
Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Plasmodium falciparum/enzimología , Sitios de Unión , Clonación Molecular , Descubrimiento de Drogas , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Modelos Moleculares , Plasmodium falciparum/efectos de los fármacos , Conformación Proteica , Bibliotecas de Moléculas Pequeñas
7.
J Infect Dis ; 214(12): 1856-1864, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27923949

RESUMEN

Cryptosporidiosis, caused by the apicomplexan parasite Cryptosporidium parvum, is a diarrheal disease that has produced a large global burden in mortality and morbidity in humans and livestock. There are currently no consistently effective parasite-specific pharmaceuticals available for this disease. Bumped kinase inhibitors (BKIs) specific for parasite calcium-dependent protein kinases (CDPKs) have been shown to reduce infection in several parasites having medical and veterinary importance, including Toxoplasma gondii, Plasmodium falciparum, and C. parvum In the present study, BKIs were screened for efficacy against C. parvum infection in the neonatal mouse model. Three BKIs were then selected for safety and clinical efficacy evaluation in the calf model for cryptosporidiosis. Significant BKI treatment effects were observed for virtually all clinical and parasitological scoring parameters, including diarrhea severity, oocyst shedding, and overall health. These results provide proof of concept for BKIs as therapeutic drug leads in an animal model for human cryptosporidiosis.


Asunto(s)
Antiprotozoarios/administración & dosificación , Enfermedades de los Bovinos/tratamiento farmacológico , Criptosporidiosis/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Animales , Animales Recién Nacidos , Antiprotozoarios/efectos adversos , Bovinos , Cryptosporidium parvum/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Ratones Endogámicos BALB C , Inhibidores de Proteínas Quinasas/efectos adversos , Resultado del Tratamiento
8.
Int J Parasitol ; 46(13-14): 871-880, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27729271

RESUMEN

Sarcocystis neurona is the most frequent cause of equine protozoal myeloencephalitis, a debilitating neurological disease of horses that can be difficult to treat. We identified SnCDPK1, the S. neurona homologue of calcium-dependent protein kinase 1 (CDPK1), a validated drug target in Toxoplasma gondii. SnCDPK1 shares the glycine "gatekeeper" residue of the well-characterized T. gondii enzyme, which allows the latter to be targeted by bumped kinase inhibitors. This study presents detailed molecular and phenotypic evidence that SnCDPK1 can be targeted for rational drug development. Recombinant SnCDPK1 was tested against four bumped kinase inhibitors shown to potently inhibit both T. gondii (Tg) CDPK1 and T. gondii tachyzoite growth. SnCDPK1 was inhibited by low nanomolar concentrations of these BKIs and S. neurona growth was inhibited at 40-120nM concentrations. Thermal shift assays confirmed these bumped kinase inhibitors bind CDPK1 in S. neurona cell lysates. Treatment with bumped kinase inhibitors before or after invasion suggests that bumped kinase inhibitors interfere with S. neurona mammalian host cell invasion in the 0.5-2.5µM range but interfere with intracellular division at 2.5µM. In vivo proof-of-concept experiments were performed in a murine model of S. neurona infection. The experimental infected groups treated for 30days with compound BKI-1553 (n=10 mice) had no signs of disease, while the infected control group had severe signs and symptoms of infection. Elevated antibody responses were found in 100% of control infected animals, but only 20% of BKI-1553 treated infected animals. Parasites were found in brain tissues of 100% of the control infected animals, but only in 10% of the BKI-1553 treated animals. The bumped kinase inhibitors used in these assays have been chemically optimized for potency, selectivity and pharmacokinetic properties, and hence are good candidates for treatment of equine protozoal myeloencephalitis.


Asunto(s)
Encefalomielitis/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/efectos de los fármacos , Sarcocystis/enzimología , Sarcocistosis/tratamiento farmacológico , Animales , Línea Celular , Chlorocebus aethiops , Encefalomielitis/parasitología , Femenino , Enfermedades de los Caballos/tratamiento farmacológico , Enfermedades de los Caballos/parasitología , Caballos , Interferón gamma/genética , Masculino , Ratones , Ratones Noqueados , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Conejos , Sarcocystis/efectos de los fármacos , Temperatura , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología
9.
J Med Chem ; 59(13): 6531-46, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27309760

RESUMEN

New therapies are needed for the treatment of toxoplasmosis, which is a disease caused by the protozoan parasite Toxoplasma gondii. To this end, we previously developed a potent and selective inhibitor (compound 1) of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) that possesses antitoxoplasmosis activity in vitro and in vivo. Unfortunately, 1 has potent human ether-a-go-go-related gene (hERG) inhibitory activity, associated with long Q-T syndrome, and consequently presents a cardiotoxicity risk. Here, we describe the identification of an optimized TgCDPK1 inhibitor 32, which does not have a hERG liability and possesses a favorable pharmacokinetic profile in small and large animals. 32 is CNS-penetrant and highly effective in acute and latent mouse models of T. gondii infection, significantly reducing the amount of parasite in the brain, spleen, and peritoneal fluid and reducing brain cysts by >85%. These properties make 32 a promising lead for the development of a new antitoxoplasmosis therapy.


Asunto(s)
Antiprotozoarios/farmacología , Sistema Nervioso Central/efectos de los fármacos , Diseño de Fármacos , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Toxoplasma/efectos de los fármacos , Toxoplasmosis/tratamiento farmacológico , Administración Oral , Animales , Antiprotozoarios/administración & dosificación , Antiprotozoarios/química , Modelos Animales de Enfermedad , Perros , Relación Dosis-Respuesta a Droga , Canales de Potasio Éter-A-Go-Go/metabolismo , Femenino , Haplorrinos , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Toxoplasma/enzimología , Toxoplasmosis/metabolismo
10.
PLoS One ; 11(3): e0149996, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26934697

RESUMEN

In 2010 the identities of thousands of anti-Plasmodium compounds were released publicly to facilitate malaria drug development. Understanding these compounds' mechanisms of action--i.e., the specific molecular targets by which they kill the parasite--would further facilitate the drug development process. Given that kinases are promising anti-malaria targets, we screened ~14,000 cell-active compounds for activity against five different protein kinases. Collections of cell-active compounds from GlaxoSmithKline (the ~13,000-compound Tres Cantos Antimalarial Set, or TCAMS), St. Jude Children's Research Hospital (260 compounds), and the Medicines for Malaria Venture (the 400-compound Malaria Box) were screened in biochemical assays of Plasmodium falciparum calcium-dependent protein kinases 1 and 4 (CDPK1 and CDPK4), mitogen-associated protein kinase 2 (MAPK2/MAP2), protein kinase 6 (PK6), and protein kinase 7 (PK7). Novel potent inhibitors (IC50 < 1 µM) were discovered for three of the kinases: CDPK1, CDPK4, and PK6. The PK6 inhibitors are the most potent yet discovered for this enzyme and deserve further scrutiny. Additionally, kinome-wide competition assays revealed a compound that inhibits CDPK4 with few effects on ~150 human kinases, and several related compounds that inhibit CDPK1 and CDPK4 yet have limited cytotoxicity to human (HepG2) cells. Our data suggest that inhibiting multiple Plasmodium kinase targets without harming human cells is challenging but feasible.


Asunto(s)
Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Proteínas Quinasas/metabolismo , Calcio/metabolismo , Línea Celular Tumoral , Células Hep G2 , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Protozoarias/metabolismo
11.
J Infect Dis ; 209(2): 275-84, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24123773

RESUMEN

Malaria parasites are transmitted by mosquitoes, and blocking parasite transmission is critical in reducing or eliminating malaria in endemic regions. Here, we report the pharmacological characterization of a new class of malaria transmission-blocking compounds that acts via the inhibition of Plasmodia CDPK4 enzyme. We demonstrate that these compounds achieved selectivity over mammalian kinases by capitalizing on a small serine gatekeeper residue in the active site of the Plasmodium CDPK4 enzyme. To directly confirm the mechanism of action of these compounds, we generated P. falciparum parasites that express a drug-resistant methionine gatekeeper (S147 M) CDPK4 mutant. Mutant parasites showed a shift in exflagellation EC50 relative to the wild-type strains in the presence of compound 1294, providing chemical-genetic evidence that CDPK4 is the target of the compound. Pharmacokinetic analyses suggest that coformulation of this transmission-blocking agent with asexual stage antimalarials such as artemisinin combination therapy (ACT) is a promising option for drug delivery that may reduce transmission of malaria including drug-resistant strains. Ongoing studies include refining the compounds to improve efficacy and toxicological properties for efficient blocking of malaria transmission.


Asunto(s)
Antimaláricos/metabolismo , Inhibidores Enzimáticos/metabolismo , Plasmodium falciparum/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Antimaláricos/aislamiento & purificación , Antimaláricos/farmacocinética , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacocinética , Flagelos/efectos de los fármacos , Flagelos/fisiología , Ratones , Plasmodium falciparum/fisiología
12.
Trends Pharmacol Sci ; 29(2): 62-71, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18190973

RESUMEN

An established paradigm in current drug development is (i) to identify a single protein target whose inhibition is likely to result in the successful treatment of a disease of interest; (ii) to assay experimentally large libraries of small-molecule compounds in vitro and in vivo to identify promising inhibitors in model systems; and (iii) to determine whether the findings are extensible to humans. This complex process, which is largely based on trial and error, is risk-, time- and cost-intensive. Computational (virtual) screening of drug-like compounds simultaneously against the atomic structures of multiple protein targets, taking into account protein-inhibitor dynamics, might help to identify lead inhibitors more efficiently, particularly for complex drug-resistant diseases. Here we discuss the potential benefits of this approach, using HIV-1 and Plasmodium falciparum infections as examples. We propose a virtual drug discovery 'pipeline' that will not only identify lead inhibitors efficiently, but also help minimize side-effects and toxicity, thereby increasing the likelihood of successful therapies.


Asunto(s)
Biología Computacional/métodos , Sistemas de Liberación de Medicamentos/métodos , Diseño de Fármacos , Animales , Fármacos Anti-VIH/farmacología , Antimaláricos/farmacología , Simulación por Computador , VIH-1/efectos de los fármacos , Humanos , Plasmodium falciparum/efectos de los fármacos
13.
Antimicrob Agents Chemother ; 51(10): 3659-71, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17606674

RESUMEN

New antimalarials are urgently needed. We have shown that tetrahydroquinoline (THQ) protein farnesyltransferase (PFT) inhibitors (PFTIs) are effective against the Plasmodium falciparum PFT and are effective at killing P. falciparum in vitro. Previously described THQ PFTIs had limitations of poor oral bioavailability and rapid clearance from the circulation of rodents. In this paper, we validate both the Caco-2 cell permeability model for predicting THQ intestinal absorption and the in vitro liver microsome model for predicting THQ clearance in vivo. Incremental improvements in efficacy, oral absorption, and clearance rate were monitored by in vitro tests; and these tests were followed up with in vivo absorption, distribution, metabolism, and excretion studies. One compound, PB-93, achieved cure when it was given orally to P. berghei-infected rats every 8 h for a total of 72 h. However, PB-93 was rapidly cleared, and dosing every 12 h failed to cure the rats. Thus, the in vivo results corroborate the in vitro pharmacodynamics and demonstrate that 72 h of continuous high-level exposure to PFTIs is necessary to kill plasmodia. The metabolism of PB-93 was demonstrated by a novel technique that relied on double labeling with a radiolabel and heavy isotopes combined with radiometric liquid chromatography and mass spectrometry. The major liver microsome metabolite of PB-93 has the PFT Zn-binding N-methyl-imidazole removed; this metabolite is inactive in blocking PFT function. By solving the X-ray crystal structure of PB-93 bound to rat PFT, a model of PB-93 bound to malarial PFT was constructed. This model suggests areas of the THQ PFTIs that can be modified to retain efficacy and protect the Zn-binding N-methyl-imidazole from dealkylation.


Asunto(s)
Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Farnesiltransferasa/antagonistas & inhibidores , Plasmodium falciparum/enzimología , Quinolinas/farmacología , Sulfonamidas/farmacología , Animales , Antimaláricos/síntesis química , Antimaláricos/farmacocinética , Conductos Biliares/metabolismo , Células CACO-2 , Permeabilidad de la Membrana Celular/efectos de los fármacos , Cristalografía por Rayos X , Remoción de Radical Alquila , Femenino , Humanos , Malaria/tratamiento farmacológico , Malaria/parasitología , Masculino , Ratones , Ratones Endogámicos BALB C , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Pruebas de Mutagenicidad , Pruebas de Sensibilidad Parasitaria , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Quinolinas/síntesis química , Quinolinas/farmacocinética , Ratas , Ratas Sprague-Dawley , Sulfonamidas/síntesis química , Sulfonamidas/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA