Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-18569317

RESUMEN

An experiment was undertaken in gnotobiotic microcosms to determine the role of buffelgrass (Cenchrus ciliaris) and a phenanthrene-degrading bacterium (strain PM600) in the degradation of phenanthrene. The Gram-negative bacterium was identified as a Sphingomonas sp. by 16S rRNA gene sequence analysis and as S. paucimobilis by biochemical tests (API 20 NE strips). Its yellow pigment corresponded to nostoxanthin and its cellular fatty acids were typical of the genus Sphingomonas. Moreover, it was devoid of lipopolysaccharides. Strain PM600 was tested for growth on mineral medium supplemented with No. 2 diesel, hexadecane, mineral oil, pristane, phenanthrene, and pyrene as single carbon sources. It was capable of utilizing phenanthrene only. In the gnotobiotic microcosms silica sand was either or not supplemented with 150 mg of phenanthrene kg(-1) sand, inoculated with strain PM600, and planted to sterile young seedlings of buffelgrass. After 28 days, 67% of the reduction of the phenanthrene concentration was assigned to degradation by the bacterium and ca. 20% to abiotic factors. No statistically significant effect of the young buffelgrass was found. In the absence of phenanthrene, the bacterial population significantly increased in the rhizosphere of buffelgrass. However, in the presence of buffelgrass and phenanthrene, the bacterial population preferentially responded to phenanthrene. The growth of buffelgrass was severely curtailed by phenanthrene in the absence of the bacterium. However, strain PM600 effectively protected buffelgrass against the phytotoxicity of phenanthrene.


Asunto(s)
Cenchrus/metabolismo , Ecosistema , Fenantrenos/farmacocinética , Microbiología del Suelo , Contaminantes del Suelo/farmacocinética , Sphingomonas/metabolismo , Biodegradación Ambiental , Vida Libre de Gérmenes/fisiología
2.
Environ Sci Pollut Res Int ; 11(5): 340-6, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15506638

RESUMEN

GOAL, SCOPE AND BACKGROUND: The goal of this study was to understand the interaction between plants and microorganisms during petroleum-hydrocarbon bioremediation in Pacific Islands coastal soils. Total bacteria and hydrocarbon-degrading microorganisms population dyanamics were examined in the rhizospheres of tropical trees and shrubs, which were evaluated for their phytoremediation potential in a greenhouse experiment. The respective and combined effects of plant roots and diesel contaminant on the microbial populations were determined in relation to diesel fuel depletion. An increase in the grading populations size of the hydrocarbon-degrading populations of microbes, elicited by rhizodeposition, is generally regarded as conducive to an enhanced degradation of petroleum hydrocarbon pollutants in vegetated soil. METHODS: The soil was a coastal sandy loam (pH 7.8) which was artificially contaminated with 10 g of No. 2 diesel fuel/kg soil or left uncontaminated. The pots were irrigated with fertilizer and 1% NaCl. The enumerations were carried out in the contaminated and uncontaminated rhizospheres of three trees, kiawe (Prosopis pallida), milo (Thespesia populnea), and kou (Cordia subcordata) and three shrubs, beach naupaka (Scaevola sericea), false sandalwood (Myoporum sandwicense), and oleander (Nerium oleander). Unplanted control soils were included in the experiment. Total bacteria and phenanthrene-degrading bacteria were enumerated on plates. Diesel- and pristane-degrading microorganisms were enumerated by the most-probable-number technique in tissue-culture plates. RESULTS AND DISCUSSION: All four types of microorganisms responded to the rhizosphere of the 6 plants in uncontaminated soil and to the diesel contaminant in unplanted soil. In contaminated rhizospheres, no effect of the plant on the hydrocarbon-degrader numbers was visible. Total bacteria responded more to the plant roots than to the contaminant. The phenanthrene-degrading bacteria and pristane-degrading microorganisms were more influenced by the contaminant than by the plants. The diesel-degrading microorganisms were equally stimulated by the plants and the contaminant. The numbers of hydrocarbon degraders were similar in the contaminated rhizospheres of the three effective plants (kiawe, kou, and milo) and in those of the three ineffective shrubs. CONCLUSION: The results suggest the quality of the rhizodeposition is plant-dependent and governs the type of diesel-degrader populations that will be enhanced by a given plant. RECOMMENDATIONS AND OUTLOOK: In the proposed phytoremediation-benefit model plant roots maintain high levels of hydrocaron degraders in uncontaminated soil. When the root enters a contaminated zone of soil, those hydrocarbon degraders that prefer the contaminant would switch to the contaminant as a carbon source, effectively removing the hydrocarbons. If the root exudates and the contaminant are equally attractive to the hydrocarbon degraders, the contaminant degradaton would be less effective.


Asunto(s)
Hidrocarburos/aislamiento & purificación , Hidrocarburos/metabolismo , Petróleo , Microbiología del Suelo , Contaminantes del Suelo/aislamiento & purificación , Contaminantes del Suelo/metabolismo , Clima Tropical , Biodegradación Ambiental , Contaminación Ambiental/prevención & control , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología
3.
Environ Sci Pollut Res Int ; 11(4): 260-6, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15341316

RESUMEN

GOAL, SCOPE AND BACKGROUND: This glasshouse study is aimed at evaluating tropical plants for phytoremediation of petroleum hydrocarbon-contaminated saline sandy subsurface soils. Tropical plants were selected for their ability to tolerate high salinity and remove No. 2 diesel fuel in coastal topsoil prior to further investigation of the phytoremediation feasibility in deep contaminated soils. The residual petroleum-hydrocarbon contaminant at the John Rogers Tank Farm site, a former petroleum storage facility, at Hickam Air Force Base, Honolulu, Hawaii, is located in a coastal area. It lies below a layer of silt in the subsurface, in loamy sand characterized by moderate salinity and high pH. Little is known regarding the ability of tropical plants to remediate petroleum hydrocarbon-contaminated subsurface soil in Hawaiian and other Pacific Island ecosystems although suitable plants have been identified and utilized for bioremediation in surface soil or marine sediments. METHODS: The experiments were conducted in long narrow pots under glasshouse conditions in two phases. A preliminary experiment was done with nine tropical plants: kiawe (Prosopis pallida), milo (Thespesia populnea), common ironwood (Casuarina equisetifolia), kou (Cordia subcordata), tropical coral tree (Erythrina variegata), false sandalwood (Myoporum sandwicense), beach naupaka (Scaevola sericea), oleander (Nerium oleander), and buffelgrass (Cenchrus ciliaris). These plants were screened for resistance to high salinity treatment (2% NaCl) and two diesel fuel levels (5 and 10 g No. 2 diesel fuel/kg soil) in separate treatments. Plants that showed good tolerance of both factors were further evaluated in a second phase for their efficacy in the phytoremediation of diesel-fuel petroleum hydrocarbons under moderate salinity treatment (1% NaCl). RESULTS: Tropical coral tree and buffelgrass were susceptible to either 2% NaCl or diesel fuel at 10 g/kg soil, but tolerant of diesel fuel at 5 g/kg soil. Kiawe, milo, kou, common ironwood, N. oleander, beach naupaka and false sandalwood were tolerant of high salinity (2% NaCl) or high diesel fuel level (10 g/kg soil). These seven plants were also tolerant of the combined adverse effects of a moderate salinity (1% NaCl) and 10 g diesel fuel/kg soil. Three trees, kiawe, milo and kou significantly accelerated the degradation of petroleum hydrocarbons in the soil spiked with 10 g diesel fuel/kg soil under a moderate salinity treatment (1% NaCl). CONCLUSION: Thus the tropical woody plants, kiawe, milo and kou showed potential for use in phytoremediation of petroleum hydrocarbons in coastal tropical soils. RECOMMENDATIONS AND OUTLOOK: Two fast growing trees, milo and kou, appeared promising for further phytoremediation evaluation in experiments that simulate the soil profile at the field site.


Asunto(s)
Carcinógenos Ambientales/aislamiento & purificación , Carcinógenos Ambientales/farmacocinética , Gasolina , Hidrocarburos/aislamiento & purificación , Hidrocarburos/farmacocinética , Contaminantes del Suelo/aislamiento & purificación , Contaminantes del Suelo/farmacocinética , Clima Tropical , Biodegradación Ambiental , Desarrollo de la Planta , Cloruro de Sodio
4.
Int J Phytoremediation ; 6(1): 17-33, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15224773

RESUMEN

It is difficult to directly evaluate the efficacy of phytoremediation of petroleum hydrocarbon contaminants embedded in deep soil layers, especially if the contaminants are of relatively low concentration and are unevenly distributed. This report describes the greenhouse and laboratory experiments carried out to evaluate a field demonstration project. A trisector planter was designed to simulate field conditions, including soil profiles and field management of the trees selected. The third or bottom section of the planter was spiked with known quantities of 6 diesel-fuel components and the reduction of their concentrations was monitored after 200 days under the influence of the plant root systems. Results are statistically compared; among the three tree species used, milo (Thespesia populnea) and kou (Cordia subcordata) are more effective than false sandalwood (Myoporum sandwicense) in reducing the concentration of the spiked contaminant. Enumerations of populations of hydrocarbon-degrading microoorganisms in the bottom section suggest that biodegradation may be affected by the response of microorganisms to both the "close rhizosphere" (soil within 1 mm of the root) and the "expanded rhizosphere" (soil in the bottom section after root removal). Root exudates leached from the upper sections could be responsible for the expanded rhizosphere effect in the bottom section.


Asunto(s)
Agricultura/instrumentación , Raíces de Plantas/crecimiento & desarrollo , Suelo , Árboles/crecimiento & desarrollo , Agricultura/métodos , Ecosistema , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA