Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Pilot Feasibility Stud ; 8(1): 216, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153609

RESUMEN

BACKGROUND: People with cystic fibrosis (CF) are prone to bacterial respiratory infections; these are often antibiotic resistant, are difficult to treat, and impact on the quality of life and lung function. The upper respiratory tract can act as a reservoir for these pathogens, and as part of clinical care, sinus rinses are used to alleviate symptoms in the upper airway. We have developed a sinus rinse containing manuka honey, to identify whether it can help improve symptoms or reduce the bacterial load. METHODS: We will undertake a randomised controlled trial where 30 adults with CF will be recruited and randomised to either the control or intervention group. Both groups will follow a sinus rinse protocol for 30 days (± 7 days); the control group will use the standard of care rinse, and the intervention group will use a manuka honey rinse. Both groups will provide samples at day 0 and day 30. The primary outcome measure will be a change in the 22-item Sino-Nasal Outcome Test (SNOT-22) score. Secondary outcomes will include changes to quality of life (questionnaire), bacterial load/community composition, and sputum viscosity. DISCUSSION: This trial will look at the use of a manuka honey-infused sinus rinse solution on patients diagnosed with cystic fibrosis (CF) suffering with sinusitis; it will allow us to determine the efficacy of the manuka honey sinus rinse compared to standard rinse and will allow us to determine if molecular bacterial diversity analysis will provide in-depth information beyond the usual conventional microbiological. It will allow us to determine the feasibility of recruiting participants to this type of trial, allow us to check participant compliance with the protocol, and inform future studies. TRIAL REGISTRATION: Approval was obtained from the Research Ethics Committee Wales REC7 reference 18/WA/0319. Results of this study will be published at international conferences and in peer-reviewed journals; they will also be presented to the relevant stakeholders and research networks. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Identifier NCT04589897 (retrospectively registered).

2.
Sci Rep ; 10(1): 16377, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009444

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of ventilator-associated pneumonia (VAP). Patients with VAP have poorly functioning neutrophils, related to increased levels of the complement fragment C5a. The antibiotic linezolid has been useful in controlling MRSA-related VAP infections; however clinical benefit does not always correlate with antimicrobial effect, suggesting the possibility of immunomodulatory properties. Here the effects of linezolid on healthy and dysfunctional neutrophils (modelled by C5a-induced injury) was investigated. Functional assays (killing, phagocytosis, transmigration, and respiratory burst) were used to assess the effects of pre-, co- and post-incubating linezolid (0.4-40 mg/L) with healthy neutrophils relative to those with C5a-induced injury. C5a decreased neutrophil killing, and phagocytosis of MRSA. Furthermore, C5a significantly decreased neutrophil transmigration to IL-8, but did not affect respiratory burst. Co-incubation of linezolid significantly improved killing of MRSA by dysfunctional neutrophils, which was supported by concomitant increases in phagocytosis. Conversely linezolid impaired killing responses in healthy neutrophils. Pre- or post-incubation of linezolid prior or following C5a induced injury had no effect on neutrophil function. This study suggests that linezolid has immunomodulatory properties that protect human neutrophils from injury and provides insight into its mode of action beyond a basic antibiotic.


Asunto(s)
Complemento C5a/metabolismo , Linezolid/uso terapéutico , Neutrófilos/efectos de los fármacos , Antibacterianos/uso terapéutico , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Neumonía Asociada al Ventilador/tratamiento farmacológico , Neumonía Asociada al Ventilador/metabolismo , Neumonía Asociada al Ventilador/microbiología , Estallido Respiratorio/efectos de los fármacos
3.
ISME J ; 14(8): 1929-1942, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32341475

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that chronically infects the lungs of individuals with cystic fibrosis (CF) by forming antibiotic-resistant biofilms. Emergence of phenotypically diverse isolates within CF P. aeruginosa populations has previously been reported; however, the impact of heterogeneity on social behaviors and community function is poorly understood. Here we describe how this heterogeneity impacts on behavioral traits by evolving the strain PAO1 in biofilms grown in a synthetic sputum medium for 50 days. We measured social trait production and antibiotic tolerance, and used a metagenomic approach to analyze and assess genomic changes over the duration of the evolution experiment. We found that (i) evolutionary trajectories were reproducible in independently evolving populations; (ii) over 60% of genomic diversity occurred within the first 10 days of selection. We then focused on quorum sensing (QS), a well-studied P. aeruginosa trait that is commonly mutated in strains isolated from CF lungs. We found that at the population level, (i) evolution in sputum medium selected for decreased the production of QS and QS-dependent traits; (ii) there was a significant correlation between lasR mutant frequency, the loss of protease, and the 3O-C12-HSL signal, and an increase in resistance to clinically relevant ß-lactam antibiotics, despite no previous antibiotic exposure. Overall, our findings provide insights into the effect of allelic polymorphism on community functions in diverse P. aeruginosa populations. Further, we demonstrate that P. aeruginosa population and evolutionary dynamics can impact on traits important for virulence and can lead to increased tolerance to ß-lactam antibiotics.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Biopelículas , Humanos , Pseudomonas aeruginosa/genética , Percepción de Quorum , Virulencia
4.
Front Microbiol ; 10: 869, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105667

RESUMEN

Pseudomonas aeruginosa causes problematic chronic lung infections in those suffering from cystic fibrosis. This is due to its antimicrobial resistance mechanisms and its ability to form robust biofilm communities with increased antimicrobial tolerances. Using novel antimicrobials or repurposing current ones is required in order to overcome these problems. Manuka honey is a natural antimicrobial agent that has been used for many decades in the treatment of chronic surface wounds with great success, particularly those infected with P. aeruginosa. Here we aim to determine whether the antimicrobial activity of manuka honey could potentially be repurposed to inhibit pulmonary P. aeruginosa infections using two ex vivo models. P. aeruginosa isolates (n = 28) from an international panel were tested for their susceptibility to manuka honey and clinically relevant antibiotics (ciprofloxacin, ceftazidime, and tobramycin), alone and in combination, using conventional antimicrobial susceptibility testing (AST). To increase clinical applicability, two ex vivo porcine lung (EVPL) models (using alveolar and bronchiolar tissue) were used to determine the anti-biofilm effects of manuka honey alone and in combination with antibiotics. All P. aeruginosa isolates were susceptible to manuka honey, however, varying incidences of resistance were seen against antibiotics. The combination of sub-inhibitory manuka honey and antibiotics using conventional AST had no effect on activity against the majority of isolates tested. Using the two ex vivo models, 64% (w/v) manuka honey inhibited many of the isolates where abnormally high concentrations of antibiotics could not. Typically, combinations of both manuka honey and antibiotics had increased antimicrobial activity. These results highlight the potential of manuka honey as a future antimicrobial for the treatment of pulmonary P. aeruginosa isolates, clearing potential infection reservoirs within the upper airway.

5.
mBio ; 8(3)2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28634237

RESUMEN

Extracellular polysaccharides are compounds secreted by microorganisms into the surrounding environment, and they are important for surface attachment and maintaining structural integrity within biofilms. The social nature of many extracellular polysaccharides remains unclear, and it has been suggested that they could function as either cooperative public goods or as traits that provide a competitive advantage. Here, we empirically tested the cooperative nature of the PSL polysaccharide, which is crucial for the formation of biofilms in Pseudomonas aeruginosa We show that (i) PSL is not metabolically costly to produce; (ii) PSL provides population-level benefits in biofilms, for both growth and antibiotic tolerance; (iii) the benefits of PSL production are social and are shared with other cells; (iv) the benefits of PSL production appear to be preferentially directed toward cells which produce PSL; (v) cells which do not produce PSL are unable to successfully exploit cells which produce PSL. Taken together, this suggests that PSL is a social but relatively nonexploitable trait and that growth within biofilms selects for PSL-producing strains, even when multiple strains are on a patch (low relatedness at the patch level).IMPORTANCE Many studies have shown that bacterial traits, such as siderophores and quorum sensing, are social in nature. This has led to an impression that secreted traits act as public goods, which are costly to produce but benefit both the producing cell and its surrounding neighbors. Theories and subsequent experiments have shown that such traits are exploitable by asocial cheats, but we show here that this does not always hold true. We demonstrate that the Pseudomonas aeruginosa exopolysaccharide PSL provides social benefits to populations but that it is nonexploitable, because most of the fitness benefits accrue to PSL-producing cells. Our work builds on an increasing body of work showing that secreted traits can have both private and public benefits to cells.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Polisacáridos Bacterianos/metabolismo , Pseudomonas aeruginosa/fisiología , Interacciones Microbianas , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo
6.
mBio ; 7(2): e00237, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27006463

RESUMEN

UNLABELLED: In traditional models ofin vitrobiofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development ofPseudomonas aeruginosabiofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation. IMPORTANCE: During the past decades, there has been a consensus around the model of development of a biofilm, involving attachment of single planktonic bacterial cells to a surface and the subsequent development of a mature biofilm. This study presents results that call for a modification of this rigorous model. We show how free floating biofilm aggregates can have a profound local effect on biofilm development when attaching to a surface. Our findings show that an aggregate landing on a surface will eventually outcompete the biofilm population arising from single cells attached around the aggregate and dominate the local biofilm development. These results point to a regime where preformed biofilm aggregates may have a fitness advantage over planktonic cells when it comes to accessing nutrients. Our findings add to the increasingly prominent comprehension that biofilm lifestyle is the default for bacteria and that planktonic single cells may be only a transition state at the most.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Adhesión Celular , Pseudomonas aeruginosa/fisiología , Simulación por Computador
7.
J Mol Biol ; 427(23): 3646-61, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26344834

RESUMEN

We have become increasingly aware that, during infection, pathogenic bacteria often grow in multicellular biofilms that are often highly resistant to antibacterial strategies. In order to understand how biofilms form and contribute to infection, many research groups around the world have heavily used in vitro biofilm systems such as microtitre plate assays and flow cells. Whilst these methods have greatly increased our understanding of the biology of biofilms, it is becoming increasingly apparent that many of our in vitro methods do not accurately represent in vivo conditions. Here we present a systematic review of the most widely used in vitro biofilm systems, and we discuss why they are not always representative of the in vivo biofilms found in chronic infections. We present examples of methods that will help us to bridge the gap between in vitro and in vivo biofilm work so that we can ultimately use our benchside data to improve bedside treatment.


Asunto(s)
Infecciones Bacterianas/microbiología , Técnicas Bacteriológicas/métodos , Biopelículas , Técnicas In Vitro , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Humanos , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad
8.
mBio ; 6(4): e01129, 2015 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-26265721

RESUMEN

UNLABELLED: Plant-derived compounds and other natural substances are a rich potential source of compounds that kill or attenuate pathogens that are resistant to current antibiotics. Medieval societies used a range of these natural substances to treat conditions clearly recognizable to the modern eye as microbial infections, and there has been much debate over the likely efficacy of these treatments. Our interdisciplinary team, comprising researchers from both sciences and humanities, identified and reconstructed a potential remedy for Staphylococcus aureus infection from a 10th century Anglo-Saxon leechbook. The remedy repeatedly killed established S. aureus biofilms in an in vitro model of soft tissue infection and killed methicillin-resistant S. aureus (MRSA) in a mouse chronic wound model. While the remedy contained several ingredients that are individually known to have some antibacterial activity, full efficacy required the combined action of several ingredients, highlighting the scholarship of premodern doctors and the potential of ancient texts as a source of new antimicrobial agents. IMPORTANCE: While the antibiotic potential of some materials used in historical medicine has been demonstrated, empirical tests of entire remedies are scarce. This is an important omission, because the efficacy of "ancientbiotics" could rely on the combined activity of their various ingredients. This would lead us to underestimate their efficacy and, by extension, the scholarship of premodern doctors. It could also help us to understand why some natural compounds that show antibacterial promise in the laboratory fail to yield positive results in clinical trials. We have reconstructed a 1,000-year-old remedy which kills the bacteria it was designed to treat and have shown that this activity relies on the combined activity of several antimicrobial ingredients. Our results highlight (i) the scholarship and rational methodology of premodern medical professionals and (ii) the untapped potential of premodern remedies for yielding novel therapeutics at a time when new antibiotics are desperately needed.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Viabilidad Microbiana/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/historia , Biopelículas/efectos de los fármacos , Modelos Animales de Enfermedad , Historia Medieval , Ratones , Pruebas de Sensibilidad Microbiana , Farmacopeas como Asunto/historia , Staphylococcus aureus/fisiología
9.
J Antimicrob Chemother ; 70(3): 716-25, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25404649

RESUMEN

OBJECTIVES: Manuka honey is a broad-spectrum antimicrobial agent that seems to affect different bacteria in many different ways. It has been shown to be bactericidal against Pseudomonas aeruginosa by destabilizing the cell wall, but we aimed to investigate whether there were further intracellular target sites. METHODS: In this study inhibitory effects of manuka honey on P. aeruginosa were investigated using hydrophobicity assays, two-dimensional electrophoresis, quantitative RT-PCR, transmission electron microscopy and motility assays. RESULTS: Exposure of P. aeruginosa to manuka honey reduced both swarming and swimming motility. Moreover, this was a consequence of de-flagellation of the bacterial cell, which was correlated with decreased expression of the major structural flagellin protein, FliC, and concurrent suppression of flagellin-associated genes, including fliA, fliC, flhF, fleN, fleQ and fleR. The differential expression of the flagellar regulon in the presence of manuka honey was mapped schematically. Flagella are integral to bacterial adhesion, the initiation of infection and biofilm formation, and swarming has been associated with increased virulence. CONCLUSIONS: By limiting motility in vitro, we infer that manuka honey impacts on the virulence of P. aeruginosa. This deduction must now be tested in vivo.


Asunto(s)
Antiinfecciosos/farmacología , Flagelos/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Miel , Locomoción/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Electroforesis en Gel Bidimensional , Flagelos/fisiología , Perfilación de la Expresión Génica , Genes Bacterianos/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Microbiology (Reading) ; 158(Pt 12): 3005-3013, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23082035

RESUMEN

The presence of Pseudomonas aeruginosa in cutaneous wounds is of clinical significance and can lead to persistent infections. Manuka honey has gained ground in clinical settings due to its effective therapeutic action and broad spectrum of antibacterial activity. In this study, the effect of manuka honey on P. aeruginosa was investigated using MIC, MBC, growth kinetics, confocal microscopy, atomic force microscopy and real-time PCR. A bactericidal mode of action for manuka honey against P. aeruginosa was deduced (12 %, w/v, MIC; 16 %, w/v, MBC) and confirmed by confocal and atomic force microscopy, which showed extensive cell lysis after 60 min exposure to inhibitory concentrations of manuka honey. The inability of honey-treated cells to form microcolonies was demonstrated and investigated using Q-PCR for three key microcolony-forming genes: algD, lasR and oprF. The expression of algD increased 16-fold whereas oprF expression decreased 10-fold following honey treatment; lasR expression remained unaltered. These findings confirm that manuka honey is effective at inducing cell lysis and identify two targets, at the genetic level, that might be involved in this process.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/biosíntesis , Deshidrogenasas de Carbohidratos/biosíntesis , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Miel , Pseudomonas aeruginosa/efectos de los fármacos , Bacteriólisis/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía de Fuerza Atómica , Microscopía Confocal , Reacción en Cadena en Tiempo Real de la Polimerasa , Transactivadores/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA