Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nat Commun ; 15(1): 4803, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839876

RESUMEN

Our current understanding of the spread and neurodegenerative effects of tau neurofibrillary tangles (NFTs) within the medial temporal lobe (MTL) during the early stages of Alzheimer's Disease (AD) is limited by the presence of confounding non-AD pathologies and the two-dimensional (2-D) nature of conventional histology studies. Here, we combine ex vivo MRI and serial histological imaging from 25 human MTL specimens to present a detailed, 3-D characterization of quantitative NFT burden measures in the space of a high-resolution, ex vivo atlas with cytoarchitecturally-defined subregion labels, that can be used to inform future in vivo neuroimaging studies. Average maps show a clear anterior to poster gradient in NFT distribution and a precise, spatial pattern with highest levels of NFTs found not just within the transentorhinal region but also the cornu ammonis (CA1) subfield. Additionally, we identify granular MTL regions where measures of neurodegeneration are likely to be linked to NFTs specifically, and thus potentially more sensitive as early AD biomarkers.


Asunto(s)
Enfermedad de Alzheimer , Imagen por Resonancia Magnética , Ovillos Neurofibrilares , Lóbulo Temporal , Proteínas tau , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología , Proteínas tau/metabolismo , Masculino , Femenino , Anciano , Imagen por Resonancia Magnética/métodos , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Anciano de 80 o más Años , Autopsia , Neuroimagen/métodos , Persona de Mediana Edad , Imágenes Post Mortem
2.
Acta Neuropathol ; 147(1): 104, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896345

RESUMEN

TAR DNA-binding protein 43 (TDP-43) is an RNA binding protein found within ribonucleoprotein granules tethered to lysosomes via annexin A11. TDP-43 protein forms inclusions in many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) and limbic predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC). Annexin A11 is also known to form aggregates in ALS cases with pathogenic variants in ANXA11. Annexin A11 aggregation has not been described in sporadic ALS, FTLD-TDP or LATE-NC cases. To explore the relationship between TDP-43 and annexin A11, genetic analysis of 822 autopsy cases was performed to identify rare ANXA11 variants. In addition, an immunohistochemical study of 368 autopsy cases was performed to identify annexin A11 aggregates. Insoluble annexin A11 aggregates which colocalize with TDP-43 inclusions were present in all FTLD-TDP Type C cases. Annexin A11 inclusions were also seen in a small proportion (3-6%) of sporadic and genetic forms of FTLD-TDP types A and B, ALS, and LATE-NC. In addition, we confirm the comingling of annexin A11 and TDP-43 aggregates in an ALS case with the pathogenic ANXA11 p.G38R variant. Finally, we found abundant annexin A11 inclusions as the primary pathologic finding in a case of progressive supranuclear palsy-like frontotemporal dementia with prominent striatal vacuolization due to a novel variant, ANXA11 p.P75S. By immunoblot, FTLD-TDP with annexinopathy and ANXA11 variant cases show accumulation of insoluble ANXA11 including a truncated fragment. These results indicate that annexin A11 forms a diverse and heterogeneous range of aggregates in both sporadic and genetic forms of TDP-43 proteinopathies. In addition, the finding of a primary vacuolar annexinopathy due to ANXA11 p.P75S suggests that annexin A11 aggregation is sufficient to cause neurodegeneration.


Asunto(s)
Anexinas , Proteínas de Unión al ADN , Degeneración Lobar Frontotemporal , Humanos , Anciano , Anexinas/genética , Anexinas/metabolismo , Femenino , Masculino , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Degeneración Lobar Frontotemporal/metabolismo , Persona de Mediana Edad , Anciano de 80 o más Años , Proteinopatías TDP-43/patología , Proteinopatías TDP-43/genética , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/metabolismo , Cuerpos de Inclusión/patología , Cuerpos de Inclusión/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Agregación Patológica de Proteínas/patología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo
3.
J Neurosci ; 44(6)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38050082

RESUMEN

Mixed pathologies are common in neurodegenerative disease; however, antemortem imaging rarely captures copathologic effects on brain atrophy due to a lack of validated biomarkers for non-Alzheimer's pathologies. We leveraged a dataset comprising antemortem MRI and postmortem histopathology to assess polypathologic associations with atrophy in a clinically heterogeneous sample of 125 human dementia patients (41 female, 84 male) with T1-weighted MRI ≤ 5 years before death and postmortem ordinal ratings of amyloid-[Formula: see text], tau, TDP-43, and [Formula: see text]-synuclein. Regional volumes were related to pathology using linear mixed-effects models; approximately 25% of data were held out for testing. We contrasted a polypathologic model comprising independent factors for each proteinopathy with two alternatives: a model that attributed atrophy entirely to the protein(s) associated with the patient's primary diagnosis and a protein-agnostic model based on the sum of ordinal scores for all pathology types. Model fits were evaluated using log-likelihood and correlations between observed and fitted volume scores. Additionally, we performed exploratory analyses relating atrophy to gliosis, neuronal loss, and angiopathy. The polypathologic model provided superior fits in the training and testing datasets. Tau, TDP-43, and [Formula: see text]-synuclein burden were inversely associated with regional volumes, but amyloid-[Formula: see text] was not. Gliosis and neuronal loss explained residual variance in and mediated the effects of tau, TDP-43, and [Formula: see text]-synuclein on atrophy. Regional brain atrophy reflects not only the primary molecular pathology but also co-occurring proteinopathies; inflammatory immune responses may independently contribute to degeneration. Our findings underscore the importance of antemortem biomarkers for detecting mixed pathology.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Masculino , Femenino , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/patología , Sustancia Gris/patología , Proteínas tau/metabolismo , Gliosis/patología , Atrofia/patología , Amiloide , Sinucleínas , Proteínas de Unión al ADN/metabolismo , Biomarcadores , Enfermedad de Alzheimer/patología
4.
Alzheimers Dement ; 20(3): 1586-1600, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38050662

RESUMEN

INTRODUCTION: Variability in relationship of tau-based neurofibrillary tangles (T) and neurodegeneration (N) in Alzheimer's disease (AD) arises from non-specific nature of N, modulated by non-AD co-pathologies, age-related changes, and resilience factors. METHODS: We used regional T-N residual patterns to partition 184 patients within the Alzheimer's continuum into data-driven groups. These were compared with groups from 159 non-AD (amyloid "negative") patients partitioned using cortical thickness, and groups in 98 patients with ante mortem MRI and post mortem tissue for measuring N and T, respectively. We applied the initial T-N residual model to classify 71 patients in an independent cohort into predefined groups. RESULTS: AD groups displayed spatial T-N mismatch patterns resembling neurodegeneration patterns in non-AD groups, similarly associated with non-AD factors and diverging cognitive outcomes. In the autopsy cohort, limbic T-N mismatch correlated with TDP-43 co-pathology. DISCUSSION: T-N mismatch may provide a personalized approach for determining non-AD factors associated with resilience/vulnerability in AD.


Asunto(s)
Enfermedad de Alzheimer , Resiliencia Psicológica , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau , Ovillos Neurofibrilares/patología , Imagen por Resonancia Magnética , Péptidos beta-Amiloides
5.
Brain ; 146(7): 2975-2988, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37150879

RESUMEN

TAR DNA-binding protein-43 (TDP-43) accumulation is the primary pathology underlying several neurodegenerative diseases. Charting the progression and heterogeneity of TDP-43 accumulation is necessary to better characterize TDP-43 proteinopathies, but current TDP-43 staging systems are heuristic and assume each syndrome is homogeneous. Here, we use data-driven disease progression modelling to derive a fine-grained empirical staging system for the classification and differentiation of frontotemporal lobar degeneration due to TDP-43 (FTLD-TDP, n = 126), amyotrophic lateral sclerosis (ALS, n = 141) and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) with and without Alzheimer's disease (n = 304). The data-driven staging of ALS and FTLD-TDP complement and extend previously described human-defined staging schema for ALS and behavioural variant frontotemporal dementia. In LATE-NC individuals, progression along data-driven stages was positively associated with age, but negatively associated with age in individuals with FTLD-TDP. Using only regional TDP-43 severity, our data driven model distinguished individuals diagnosed with ALS, FTLD-TDP or LATE-NC with a cross-validated accuracy of 85.9%, with misclassifications associated with mixed pathological diagnosis, age and genetic mutations. Adding age and SuStaIn stage to this model increased accuracy to 92.3%. Our model differentiates LATE-NC from FTLD-TDP, though some overlap was observed between late-stage LATE-NC and early-stage FTLD-TDP. We further tested for the presence of subtypes with distinct regional TDP-43 progression patterns within each diagnostic group, identifying two distinct cortical-predominant and brainstem-predominant subtypes within FTLD-TDP and a further two subcortical-predominant and corticolimbic-predominant subtypes within ALS. The FTLD-TDP subtypes exhibited differing proportions of TDP-43 type, while there was a trend for age differing between ALS subtypes. Interestingly, a negative relationship between age and SuStaIn stage was seen in the brainstem/subcortical-predominant subtype of each proteinopathy. No subtypes were observed for the LATE-NC group, despite aggregating individuals with and without Alzheimer's disease and a larger sample size for this group. Overall, we provide an empirical pathological TDP-43 staging system for ALS, FTLD-TDP and LATE-NC, which yielded accurate classification. We further demonstrate that there is substantial heterogeneity amongst ALS and FTLD-TDP progression patterns that warrants further investigation in larger cross-cohort studies.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Proteinopatías TDP-43 , Humanos , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/patología , Enfermedad de Alzheimer/patología , Proteinopatías TDP-43/patología , Degeneración Lobar Frontotemporal/patología , Proteínas de Unión al ADN/genética
6.
Brain ; 146(6): 2557-2569, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36864661

RESUMEN

Pathologies that are causative for neurodegenerative disease (ND) are also frequently present in unimpaired, older individuals. In this retrospective study of 1647 autopsied individuals, we report the incidence of 10 pathologies across ND and normal ageing in attempt to clarify which pathological combinations are disease-associated and which are ageing-related. Eight clinically defined groups were examined including unimpaired individuals and those with clinical Alzheimer's disease, mixed dementia, amyotrophic lateral sclerosis, frontotemporal degeneration, multiple system atrophy, probable Lewy body disease or probable tauopathies. Up to seven pathologies were observed concurrently resulting in a heterogeneous mix of 161 pathological combinations. The presence of multiple additive pathologies associated with older age, increasing disease duration, APOE e4 allele and presence of dementia across the clinical groups. Fifteen to 67 combinations occurred in each group, with the unimpaired group defined by 35 combinations. Most combinations occurred at a <5% prevalence including 86 that were present in only one or two individuals. To better understand this heterogeneity, we organized the pathological combinations into five broad categories based on their age-related frequency: (i) 'Ageing only' for the unimpaired group combinations; (ii) 'ND only' if only the expected pathology for that individual's clinical phenotype was present; (iii) 'Other ND' if the expected pathology was not present; (iv) 'ND + ageing' if the expected pathology was present together with ageing-related pathologies at a similar prevalence as the unimpaired group; and (v) 'ND + associated' if the expected pathology was present together with other pathologies either not observed in the unimpaired group or observed at a greater frequency. ND only cases comprised a minority of cases (19-45%) except in the amyotrophic lateral sclerosis (56%) and multiple system atrophy (65%) groups. The ND + ageing category represented 9-28% of each group, but was rare in Alzheimer's disease (1%). ND + associated combinations were common in Alzheimer's disease (58%) and Lewy body disease (37%) and were observed in all groups. The Ageing only and Other ND categories accounted for a minority of individuals in each group. This observed heterogeneity indicates that the total pathological burden in ND is frequently more than a primary expected clinicopathological correlation with a high frequency of additional disease- or age-associated pathologies.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Enfermedad por Cuerpos de Lewy , Atrofia de Múltiples Sistemas , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad por Cuerpos de Lewy/patología , Esclerosis Amiotrófica Lateral/patología , Estudios Retrospectivos
7.
medRxiv ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36824762

RESUMEN

Variability in the relationship of tau-based neurofibrillary tangles (T) and degree of neurodegeneration (N) in Alzheimer's Disease (AD) is likely attributable to the non-specific nature of N, which is also modulated by such factors as other co-pathologies, age-related changes, and developmental differences. We studied this variability by partitioning patients within the Alzheimer's continuum into data-driven groups based on their regional T-N dissociation, which reflects the residuals after the effect of tau pathology is "removed". We found six groups displaying distinct spatial T-N mismatch and thickness patterns despite similar tau burden. Their T-N patterns resembled the neurodegeneration patterns of non-AD groups partitioned on the basis of z-scores of cortical thickness alone and were similarly associated with surrogates of non-AD factors. In an additional sample of individuals with antemortem imaging and autopsy, T-N mismatch was associated with TDP-43 co-pathology. Finally, T-N mismatch training was then applied to a separate cohort to determine the ability to classify individual patients within these groups. These findings suggest that T-N mismatch may provide a personalized approach for determining non-AD factors associated with resilience/vulnerability to Alzheimer's disease.

8.
medRxiv ; 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36778217

RESUMEN

TAR DNA-binding protein-43 (TDP-43) accumulation is the primary pathology underlying several neurodegenerative diseases. Charting the progression and heterogeneity of TDP-43 accumulation is necessary to better characterise TDP-43 proteinopathies, but current TDP-43 staging systems are heuristic and assume each syndrome is homogeneous. Here, we use data-driven disease progression modelling to derive a fine-grained empirical staging system for the classification and differentiation of frontotemporal lobar degeneration due to TDP-43 (FTLD-TDP, n=126), amyotrophic lateral sclerosis (ALS, n=141) and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) with and without Alzheimer’s disease (n=304). The data-driven staging of ALS and FTLD-TDP complement and extend previously described human-defined staging schema for ALS and behavioural variant frontotemporal dementia. In LATE-NC individuals, progression along data-driven stages was positively associated with age, but negatively associated with age in individuals with FTLD-TDP. Using only regional TDP-43 severity, our data driven model distinguished individuals diagnosed with ALS, FTLD-TDP or LATE-NC with a cross-validated accuracy of 85.9%, with misclassifications associated with mixed pathological diagnosis, age and genetic mutations. Adding age and SuStaIn stage to this model increased accuracy to 92.3%. Our model differentiates LATE-NC from FTLD-TDP, though some overlap was observed between late-stage LATE-NC and early-stage FTLD-TDP. We further tested for the presence of subtypes with distinct regional TDP-43 progression patterns within each diagnostic group, identifying two distinct cortical-predominant and brainstem-predominant subtypes within FTLD-TDP and a further two subcortical-predominant and corticolimbic-predominant subtypes within ALS. The FTLD-TDP subtypes exhibited differing proportions of TDP-43 type, while there was a trend for age differing between ALS subtypes. Interestingly, a negative relationship between age and SuStaIn stage was seen in the brainstem/subcortical-predominant subtype of each proteinopathy. No subtypes were observed for the LATE-NC group, despite aggregating AD+ and AD-individuals and a larger sample size for this group. Overall, we provide an empirical pathological TDP-43 staging system for ALS, FTLD-TDP and LATE-NC, which yielded accurate classification. We further demonstrate that there is substantial heterogeneity amongst ALS and FTLD-TDP progression patterns that warrants further investigation in larger cross-cohort studies.

9.
Neuropathol Appl Neurobiol ; 49(1): e12865, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36456471

RESUMEN

AIMS: Adult polyglucosan body disease (APBD) is a progressive neurogenetic disorder caused by 1,4-alpha-glucan branching enzyme 1 (GBE1) mutation with an accumulation of polyglucosan bodies (PBs) in the central and peripheral nervous systems as a pathological hallmark. Here, we report two siblings in a family with a GBE1 mutation with prominent frontotemporal lobar degeneration with TAR DNA-binding protein 43 (FTLD-TDP) and ageing-related tau astrogliopathy (ARTAG) copathologies with PBs in the central nervous system. METHODS: Whole-genome sequencing (WGS) followed by Sanger sequencing (SS) was performed on three affected and two unaffected siblings in a pedigree diagnosed with familial frontotemporal dementia. Out of the affected siblings, autopsies were conducted on two cases, and brain samples were used for biochemical and histological analyses. Brain sections were stained with haematoxylin and eosin and immunostained with antibodies against ubiquitin, tau, amyloid ß, α-synuclein, TDP-43 and fused in sarcoma (FUS). RESULTS: A novel single nucleotide deletion in GBE1, c.1280delG, was identified, which is predicted to result in a reading frameshift, p.Gly427Glufs*9. This variant segregated with disease in the family, is absent from population databases and is predicted to cause loss of function, a known genetic mechanism for APBD. The affected siblings showed a greater than 50% decrease in GBE protein levels. Immunohistochemical analysis revealed widespread FTLD-TDP (type A) and ARTAG pathologies as well as PBs in the brains of two affected siblings for whom an autopsy was performed. CONCLUSIONS: This is the first report of a family with several individuals with a FTD clinical phenotype and underlying copathologies of APBD, FTLD-TDP and ARTAG with a segregating GBE1 loss-of-function mutation in affected siblings. The finding of copathologies of APBD and FTLD-TDP suggests these processes may share a disease mechanism resulting from this GBE1 mutation.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Sistema de la Enzima Desramificadora del Glucógeno , Humanos , Demencia Frontotemporal/patología , Enzima Ramificadora de 1,4-alfa-Glucano/genética , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Péptidos beta-Amiloides/metabolismo , Degeneración Lobar Frontotemporal/patología , Encéfalo/patología , Mutación , Proteínas de Unión al ADN/metabolismo , Proteínas tau/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo
10.
Alzheimers Dement ; 19(6): 2355-2364, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36464907

RESUMEN

INTRODUCTION: Neurodegenerative disorders are associated with different pathologies that often co-occur but cannot be measured specifically with in vivo methods. METHODS: Thirty-three brain hemispheres from donors with an Alzheimer's disease (AD) spectrum diagnosis underwent T2-weighted magnetic resonance imaging (MRI). Gray matter thickness was paired with histopathology from the closest anatomic region in the contralateral hemisphere. RESULTS: Partial Spearman correlation of phosphorylated tau and cortical thickness with TAR DNA-binding protein 43 (TDP-43) and α-synuclein scores, age, sex, and postmortem interval as covariates showed significant relationships in entorhinal and primary visual cortices, temporal pole, and insular and posterior cingulate gyri. Linear models including Braak stages, TDP-43 and α-synuclein scores, age, sex, and postmortem interval showed significant correlation between Braak stage and thickness in the parahippocampal gyrus, entorhinal cortex, and Broadman area 35. CONCLUSION: We demonstrated an association of measures of AD pathology with tissue loss in several AD regions despite a limited range of pathology in these cases. HIGHLIGHTS: Neurodegenerative disorders are associated with co-occurring pathologies that cannot be measured specifically with in vivo methods. Identification of the topographic patterns of these pathologies in structural magnetic resonance imaging (MRI) may provide probabilistic biomarkers. We demonstrated the correlation of the specific patterns of tissue loss from ex vivo brain MRI with underlying pathologies detected in postmortem brain hemispheres in patients with Alzheimer's disease (AD) spectrum disorders. The results provide insight into the interpretation of in vivo structural MRI studies in patients with AD spectrum disorders.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Enfermedades Neurodegenerativas/complicaciones , Imagen por Resonancia Magnética , Proteínas de Unión al ADN
11.
Acta Neuropathol ; 144(6): 1085-1102, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36112222

RESUMEN

Alzheimer's disease (AD) has multiple clinically and pathologically defined subtypes where the underlying causes of such heterogeneity are not well established. Rare TREM2 variants confer significantly increased risk for clinical AD in addition to other neurodegenerative disease clinical phenotypes. Whether TREM2 variants are associated with atypical clinical or pathologically defined subtypes of AD is not known. We studied here the clinical and pathological features associated with TREM2 risk variants in an autopsy-confirmed cohort. TREM2 variant cases were more frequently associated with non-amnestic clinical syndromes. Pathologically, TREM2 variant cases were associated with an atypical distribution of neurofibrillary tangle density with significantly lower hippocampal NFT burden relative to neocortical NFT accumulation. In addition, NFT density but not amyloid burden was associated with an increase of dystrophic microglia. TREM2 variant cases were not associated with an increased prevalence, extent, or severity of co-pathologies. These clinicopathological features suggest that TREM2 variants contribute to clinical and pathologic AD heterogeneity by altering the distribution of neurofibrillary degeneration and tau-dependent microglial dystrophy, resulting in hippocampal-sparing and non-amnestic AD phenotypes.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedades Neurodegenerativas/patología , Ovillos Neurofibrilares/patología , Hipocampo/patología , Microglía/patología , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
12.
Nat Commun ; 13(1): 1362, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292638

RESUMEN

Tau pathology is the main driver of neuronal dysfunction in 4-repeat tauopathies, including cortico-basal degeneration and progressive supranuclear palsy. Tau is assumed to spread prion-like across connected neurons, but the mechanisms of tau propagation are largely elusive in 4-repeat tauopathies, characterized not only by neuronal but also by astroglial and oligodendroglial tau accumulation. Here, we assess whether connectivity is associated with 4R-tau deposition patterns by combining resting-state fMRI connectomics with both 2nd generation 18F-PI-2620 tau-PET in 46 patients with clinically diagnosed 4-repeat tauopathies and post-mortem cell-type-specific regional tau assessments from two independent progressive supranuclear palsy patient samples (n = 97 and n = 96). We find that inter-regional connectivity is associated with higher inter-regional correlation of both tau-PET and post-mortem tau levels in 4-repeat tauopathies. In regional cell-type specific post-mortem tau assessments, this association is stronger for neuronal than for astroglial or oligodendroglial tau, suggesting that connectivity is primarily associated with neuronal tau accumulation. Using tau-PET we find further that patient-level tau patterns are associated with the connectivity of subcortical tau epicenters. Together, the current study provides combined in vivo tau-PET and histopathological evidence that brain connectivity is associated with tau deposition patterns in 4-repeat tauopathies.


Asunto(s)
Parálisis Supranuclear Progresiva , Tauopatías , Encéfalo/metabolismo , Humanos , Imagen por Resonancia Magnética , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología , Tauopatías/diagnóstico por imagen , Tauopatías/patología , Proteínas tau/metabolismo
13.
Acta Neuropathol ; 143(1): 15-31, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34854996

RESUMEN

Limbic-predominant age-related TDP-43 encephalopathy (LATE) is characterized by the accumulation of TAR-DNA-binding protein 43 (TDP-43) aggregates in older adults. LATE coexists with Lewy body disease (LBD) as well as other neuropathological changes including Alzheimer's disease (AD). We aimed to identify the pathological, clinical, and genetic characteristics of LATE in LBD (LATE-LBD) by comparing it with LATE in AD (LATE-AD), LATE with mixed pathology of LBD and AD (LATE-LBD + AD), and LATE alone (Pure LATE). We analyzed four cohorts of autopsy-confirmed LBD (n = 313), AD (n = 282), LBD + AD (n = 355), and aging (n = 111). We assessed the association of LATE with patient profiles including LBD subtype and AD neuropathologic change (ADNC). We studied the morphological and distributional differences between LATE-LBD and LATE-AD. By frequency analysis, we staged LATE-LBD and examined the association with cognitive impairment and genetic risk factors. Demographic analysis showed LATE associated with age in all four cohorts and the frequency of LATE was the highest in LBD + AD followed by AD, LBD, and Aging. LBD subtype and ADNC associated with LATE in LBD or AD but not in LBD + AD. Pathological analysis revealed that the hippocampal distribution of LATE was different between LATE-LBD and LATE-AD: neuronal cytoplasmic inclusions were more frequent in cornu ammonis 3 (CA3) in LATE-LBD compared to LATE-AD and abundant fine neurites composed of C-terminal truncated TDP-43 were found mainly in CA2 to subiculum in LATE-LBD, which were not as numerous in LATE-AD. Some of these fine neurites colocalized with phosphorylated α-synuclein. LATE-LBD staging showed LATE neuropathological changes spread in the dentate gyrus and brainstem earlier than in LATE-AD. The presence and prevalence of LATE in LBD associated with cognitive impairment independent of either LBD subtype or ADNC; LATE-LBD stage also associated with the genetic risk variants of TMEM106B rs1990622 and GRN rs5848. These data highlight clinicopathological and genetic features of LATE-LBD.


Asunto(s)
Envejecimiento/patología , Encéfalo/patología , Enfermedad por Cuerpos de Lewy/patología , Proteinopatías TDP-43/patología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Femenino , Humanos , Enfermedad por Cuerpos de Lewy/complicaciones , Enfermedad por Cuerpos de Lewy/genética , Masculino , Persona de Mediana Edad , Proteinopatías TDP-43/complicaciones , Proteinopatías TDP-43/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-37250748

RESUMEN

Cerebrovascular lesions are prevalent in late life and frequently co-occur but the relationship to cognitive impairment is complicated by the lack of consensus around which lesions represent hallmark pathologies for vascular impairment, particularly in the presence of Alzheimer's disease (AD). We developed an easily applicable model of cerebrovascular disease (CVD), defined as the presence of two or more lesions: moderate to severe cerebral amyloid angiopathy, moderate to severe arteriolosclerosis, infarcts (large, lacunar, or micro), and/or hemorrhages. AD was defined as intermediate or high AD neuropathologic change. The contribution of vascular risk factors such as atherosclerosis and/or a health history of heart disease, hyperlipidemia, stroke events, diabetes, or hypertension was also assessed. Logistic regression analysis reported the association of CVD with increasing age, vascular risk factors, AD, and cognitive impairment in this study of 1,485 autopsied individuals. Cerebrovascular lesions were present in 48% and 16% had CVD. Increasing age associated with all lesions (p<0.001), except hemorrhages (p=0.41). CVD was more likely in individuals with vascular risk factors or AD (p<0.01). CVD, but not individual cerebrovascular lesions, associated with impairment in cases without AD (p<0.01), but not in cases with AD (p>0.61). From this, we conclude that a simple, additive model of CVD is 1) age and AD-associated, 2) is associated with vascular risk factors, and 3) clinically correlates with cognitive decline independent of AD.

15.
Acta Neuropathol Commun ; 9(1): 173, 2021 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-34689831

RESUMEN

Tau neurofibrillary tangle (NFT) pathology in the medial temporal lobe (MTL) is closely linked to neurodegeneration, and is the early pathological change associated with Alzheimer's disease (AD). To elucidate patterns of structural change in the MTL specifically associated with tau pathology, we compared high-resolution ex vivo MRI scans of human postmortem MTL specimens with histology-based pathological assessments of the MTL. MTL specimens were obtained from twenty-nine brain donors, including patients with AD, other dementias, and individuals with no known history of neurological disease. Ex vivo MRI scans were combined using a customized groupwise diffeomorphic registration approach to construct a 3D probabilistic atlas that captures the anatomical variability of the MTL. Using serial histology imaging in eleven specimens, we labelled the MTL subregions in the atlas based on cytoarchitecture. Leveraging the atlas and neuropathological ratings of tau and TAR DNA-binding protein 43 (TDP-43) pathology severity, morphometric analysis was performed to correlate regional MTL thickness with the severity of tau pathology, after correcting for age and TDP-43 pathology. We found significant correlations between tau pathology and thickness in the entorhinal cortex (ERC) and stratum radiatum lacunosum moleculare (SRLM). When focusing on cases with low levels of TDP-43 pathology, we found strong associations between tau pathology and thickness in the ERC, SRLM and the subiculum/cornu ammonis 1 (CA1) subfields of the hippocampus, consistent with early Braak stages.


Asunto(s)
Imagenología Tridimensional/métodos , Ovillos Neurofibrilares/patología , Neuroimagen/métodos , Lóbulo Temporal/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Atlas como Asunto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Lóbulo Temporal/patología , Proteínas tau
16.
Brain ; 144(9): 2784-2797, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34259858

RESUMEN

Tau protein neurofibrillary tangles are closely linked to neuronal/synaptic loss and cognitive decline in Alzheimer's disease and related dementias. Our knowledge of the pattern of neurofibrillary tangle progression in the human brain, critical to the development of imaging biomarkers and interpretation of in vivo imaging studies in Alzheimer's disease, is based on conventional two-dimensional histology studies that only sample the brain sparsely. To address this limitation, ex vivo MRI and dense serial histological imaging in 18 human medial temporal lobe specimens (age 75.3 ± 11.4 years, range 45 to 93) were used to construct three-dimensional quantitative maps of neurofibrillary tangle burden in the medial temporal lobe at individual and group levels. Group-level maps were obtained in the space of an in vivo brain template, and neurofibrillary tangles were measured in specific anatomical regions defined in this template. Three-dimensional maps of neurofibrillary tangle burden revealed significant variation along the anterior-posterior axis. While early neurofibrillary tangle pathology is thought to be confined to the transentorhinal region, we found similar levels of burden in this region and other medial temporal lobe subregions, including amygdala, temporopolar cortex, and subiculum/cornu ammonis 1 hippocampal subfields. Overall, the three-dimensional maps of neurofibrillary tangle burden presented here provide more complete information about the distribution of this neurodegenerative pathology in the region of the cortex where it first emerges in Alzheimer's disease, and may help inform the field about the patterns of pathology spread, as well as support development and validation of neuroimaging biomarkers.


Asunto(s)
Mapeo Encefálico/métodos , Imagenología Tridimensional/métodos , Ovillos Neurofibrilares/patología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/patología , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
17.
Acta Neuropathol ; 142(4): 629-642, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34152475

RESUMEN

The neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TAR DNA-binding protein-43 (TDP-43) inclusions (FTLD-TDP) share the neuropathological hallmark of aggregates of TDP-43. However, factors governing the severity and regional distribution of TDP-43 pathology, which may account for the divergent clinical presentations of ALS and FTLD-TDP, are not well understood. Here, we investigated the influence of genotypes at TMEM106B, a locus associated with risk for FTLD-TDP, and hexanucleotide repeat expansions in C9orf72, a known genetic cause for both ALS and FTLD-TDP, on global TDP-43 pathology and regional distribution of TDP-43 pathology in 899 postmortem cases from a spectrum of neurodegenerative diseases. We found that, among the 110 ALS cases, minor (C)-allele homozygotes at the TMEM106B locus sentinel SNP rs1990622 had more TDP-43 pathology globally, as well as in select brain regions. C9orf72 expansions similarly associated with greater TDP-43 pathology in ALS. However, adjusting for C9orf72 expansion status did not affect the relationship between TMEM106B genotype and TDP-43 pathology. To elucidate the direction of causality for this association, we directly manipulated TMEM106B levels in an inducible cell system that expresses mislocalized TDP-43 protein. We found that partial knockdown of TMEM106B, to levels similar to what would be expected in rs1990622 C allele carriers, led to development of more TDP-43 cytoplasmic aggregates, which were more insoluble, in this system. Taken together, our results support a causal role for TMEM106B in modifying the development of TDP-43 proteinopathy.


Asunto(s)
Enfermedad de Alzheimer/etiología , Proteína C9orf72/fisiología , Proteínas de Unión al ADN/fisiología , Enfermedad por Cuerpos de Lewy/etiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Proteinopatías TDP-43/etiología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Estudios de Cohortes , Femenino , Humanos , Enfermedad por Cuerpos de Lewy/patología , Masculino , Persona de Mediana Edad , Proteinopatías TDP-43/patología
18.
Brain Commun ; 3(1): fcab011, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33644757

RESUMEN

Microglia are the resident phagocytes of the central nervous system, and microglial activation is considered to play an important role in the pathogenesis of neurodegenerative diseases. Recent studies with single-cell RNA analysis of CNS cells in Alzheimer's disease and diverse other neurodegenerative conditions revealed that the transition from homeostatic microglia to disease-associated microglia was defined by changes of gene expression levels, including down-regulation of the P2Y12 receptor gene (P2Y12R). However, it is yet to be clarified in Alzheimer's disease brains whether and when this down-regulation occurs in response to amyloid-ß and tau depositions, which are core pathological processes in the disease etiology. To further evaluate the significance of P2Y12 receptor alterations in the neurodegenerative pathway of Alzheimer's disease and allied disorders, we generated an anti-P2Y12 receptor antibody and examined P2Y12 receptor expressions in the brains of humans and model mice bearing amyloid-ß and tau pathologies. We observed that the brains of both Alzheimer's disease and non-Alzheimer's disease tauopathy patients and tauopathy model mice (rTg4510 and PS19 mouse lines) displayed declined microglial P2Y12 receptor levels in regions enriched with tau inclusions, despite an increase in the total microglial population. Notably, diminution of microglial immunoreactivity with P2Y12 receptor was noticeable prior to massive accumulations of phosphorylated tau aggregates and neurodegeneration in rTg4510 mouse brains, despite a progressive increase of total microglial population. On the other hand, Iba1-positive microglia encompassing compact and dense-cored amyloid-ß plaques expressed P2Y12 receptor at varying levels in amyloid precursor protein (APP) mouse models (APP23 and AppNL-F/NL-F mice). By contrast, neuritic plaques in Alzheimer's disease brains were associated with P2Y12 receptor-negative microglia. These data suggest that the down-regulation of microglia P2Y12 receptor, which is characteristic of disease-associated microglia, is intimately associated with tau rather than amyloid-ß pathologies from an early stage and could be a sensitive index for neuroinflammatory responses to Alzheimer's disease-related neurodegenerative processes.

19.
Brain ; 144(3): 953-962, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33449993

RESUMEN

Cerebral amyloid angiopathy (CAA), limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) and Lewy bodies occur in the absence of clinical and neuropathological Alzheimer's disease, but their prevalence and severity dramatically increase in Alzheimer's disease. To investigate how plaques, tangles, age and apolipoprotein E ε4 (APOE ε4) interact with co-pathologies in Alzheimer's disease, we analysed 522 participants ≥50 years of age with and without dementia from the Center for Neurodegenerative Disease Research (CNDR) autopsy program and 1340 participants in the National Alzheimer's Coordinating Center (NACC) database. Consensus criteria were applied for Alzheimer's disease using amyloid phase and Braak stage. Co-pathology was staged for CAA (neocortical, allocortical, and subcortical), LATE-NC (amygdala, hippocampal, and cortical), and Lewy bodies (brainstem, limbic, neocortical, and amygdala predominant). APOE genotype was determined for all CNDR participants. Ordinal logistic regression was performed to quantify the effect of independent variables on the odds of having a higher stage after checking the proportional odds assumption. We found that without dementia, increasing age associated with all pathologies including CAA (odds ratio 1.63, 95% confidence interval 1.38-1.94, P < 0.01), LATE-NC (1.48, 1.16-1.88, P < 0.01), and Lewy bodies (1.45, 1.15-1.83, P < 0.01), but APOE ε4 only associated with CAA (4.80, 2.16-10.68, P < 0.01). With dementia, increasing age associated with LATE-NC (1.30, 1.15-1.46, P < 0.01), while Lewy bodies associated with younger ages (0.90, 0.81-1.00, P = 0.04), and APOE ε4 only associated with CAA (2.36, 1.52-3.65, P < 0.01). A longer disease course only associated with LATE-NC (1.06, 1.01-1.11, P = 0.01). Dementia in the NACC cohort associated with the second and third stages of CAA (2.23, 1.50-3.30, P < 0.01), LATE-NC (5.24, 3.11-8.83, P < 0.01), and Lewy bodies (2.41, 1.51-3.84, P < 0.01). Pathologically, increased Braak stage associated with CAA (5.07, 2.77-9.28, P < 0.01), LATE-NC (5.54, 2.33-13.15, P < 0.01), and Lewy bodies (4.76, 2.07-10.95, P < 0.01). Increased amyloid phase associated with CAA (2.27, 1.07-4.80, P = 0.03) and Lewy bodies (6.09, 1.66-22.33, P = 0.01). In summary, we describe widespread distributions of CAA, LATE-NC and Lewy bodies that progressively accumulate alongside plaques and tangles in Alzheimer's disease dementia. CAA interacted with plaques and tangles especially in APOE ε4 positive individuals; LATE-NC associated with tangles later in the disease course; most Lewy bodies associated with moderate to severe plaques and tangles.


Asunto(s)
Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/patología , Angiopatía Amiloide Cerebral/epidemiología , Enfermedad por Cuerpos de Lewy/epidemiología , Proteinopatías TDP-43/epidemiología , Anciano , Anciano de 80 o más Años , Comorbilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
20.
Brain ; 143(9): 2844-2857, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830216

RESUMEN

TAR-DNA binding protein-43 (TDP-43) proteinopathy is seen in multiple brain diseases. A standardized terminology was recommended recently for common age-related TDP-43 proteinopathy: limbic-predominant, age-related TDP-43 encephalopathy (LATE) and the underlying neuropathological changes, LATE-NC. LATE-NC may be co-morbid with Alzheimer's disease neuropathological changes (ADNC). However, there currently are ill-defined diagnostic classification issues among LATE-NC, ADNC, and frontotemporal lobar degeneration with TDP-43 (FTLD-TDP). A practical challenge is that different autopsy cohorts are composed of disparate groups of research volunteers: hospital- and clinic-based cohorts are enriched for FTLD-TDP cases, whereas community-based cohorts have more LATE-NC cases. Neuropathological methods also differ across laboratories. Here, we combined both cases and neuropathologists' diagnoses from two research centres-University of Pennsylvania and University of Kentucky. The study was designed to compare neuropathological findings between FTLD-TDP and pathologically severe LATE-NC. First, cases were selected from the University of Pennsylvania with pathological diagnoses of either FTLD-TDP (n = 33) or severe LATE-NC (mostly stage 3) with co-morbid ADNC (n = 30). Sections from these University of Pennsylvania cases were cut from amygdala, anterior cingulate, superior/mid-temporal, and middle frontal gyrus. These sections were stained for phospho-TDP-43 immunohistochemically and evaluated independently by two University of Kentucky neuropathologists blinded to case data. A simple set of criteria hypothesized to differentiate FTLD-TDP from LATE-NC was generated based on density of TDP-43 immunoreactive neuronal cytoplasmic inclusions in the neocortical regions. Criteria-based sensitivity and specificity of differentiating severe LATE-NC from FTLD-TDP cases with blind evaluation was ∼90%. Another proposed neuropathological feature related to TDP-43 proteinopathy in aged individuals is 'Alpha' versus 'Beta' in amygdala. Alpha and Beta status was diagnosed by neuropathologists from both universities (n = 5 raters). There was poor inter-rater reliability of Alpha/Beta classification (mean κ = 0.31). We next tested a separate cohort of cases from University of Kentucky with either FTLD-TDP (n = 8) or with relatively 'pure' severe LATE-NC (lacking intermediate or severe ADNC; n = 14). The simple criteria were applied by neuropathologists blinded to the prior diagnoses at University of Pennsylvania. Again, the criteria for differentiating LATE-NC from FTLD-TDP was effective, with sensitivity and specificity ∼90%. If more representative cases from each cohort (including less severe TDP-43 proteinopathy) had been included, the overall accuracy for identifying LATE-NC was estimated at >98% for both cohorts. Also across both cohorts, cases with FTLD-TDP died younger than those with LATE-NC (P < 0.0001). We conclude that in most cases, severe LATE-NC and FTLD-TDP can be differentiated by applying simple neuropathological criteria.


Asunto(s)
Degeneración Lobar Frontotemporal/diagnóstico por imagen , Sistema Límbico/diagnóstico por imagen , Proteinopatías TDP-43/diagnóstico por imagen , Factores de Edad , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Degeneración Lobar Frontotemporal/fisiopatología , Humanos , Sistema Límbico/fisiopatología , Masculino , Persona de Mediana Edad , Proteinopatías TDP-43/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA