Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Front Psychiatry ; 15: 1337882, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39355381

RESUMEN

Introduction: Schizophrenia is characterized by a loss of network features between cognition and reward sub-circuits (notably involving the mesolimbic system), and this loss may explain deficits in learning and cognition. Learning in schizophrenia has typically been studied with tasks that include reward related contingencies, but recent theoretical models have argued that a loss of network features should be seen even when learning without reward. We tested this model using a learning paradigm that required participants to learn without reward or feedback. We used a novel method for capturing higher order network features, to demonstrate that the mesolimbic system is heavily implicated in the loss of network features in schizophrenia, even when learning without reward. Methods: fMRI data (Siemens Verio 3T) were acquired in a group of schizophrenia patients and controls (n=78; 46 SCZ, 18 ≤ Age ≤ 50) while participants engaged in associative learning without reward-related contingencies. The task was divided into task-active conditions for encoding (of associations) and cued-retrieval (where the cue was to be used to retrieve the associated memoranda). No feedback was provided during retrieval. From the fMRI time series data, network features were defined as follows: First, for each condition of the task, we estimated 2nd order undirected functional connectivity for each participant (uFC, based on zero lag correlations between all pairs of regions). These conventional 2nd order features represent the task/condition evoked synchronization of activity between pairs of brain regions. Next, in each of the patient and control groups, the statistical relationship between all possible pairs of 2nd order features were computed. These higher order features represent the consistency between all possible pairs of 2nd order features in that group and embed within them the contributions of individual regions to such group structure. Results: From the identified inter-group differences (SCZ ≠ HC) in higher order features, we quantified the respective contributions of individual brain regions. Two principal effects emerged: 1) SCZ were characterized by a massive loss of higher order features during multiple task conditions (encoding and retrieval of associations). 2) Nodes in the mesolimbic system were over-represented in the loss of higher order features in SCZ, and notably so during retrieval. Discussion: Our analytical goals were linked to a recent circuit-based integrative model which argued that synergy between learning and reward circuits is lost in schizophrenia. The model's notable prediction was that such a loss would be observed even when patients learned without reward. Our results provide substantial support for these predictions where we observed a loss of network features between the brain's sub-circuits for a) learning (including the hippocampus and prefrontal cortex) and b) reward processing (specifically constituents of the mesolimbic system that included the ventral tegmental area and the nucleus accumbens. Our findings motivate a renewed appraisal of the relationship between reward and cognition in schizophrenia and we discuss their relevance for putative behavioral interventions.

2.
J Affect Disord ; 351: 833-842, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38341153

RESUMEN

BACKGROUND: Stress-induced illnesses, like major depression, are among the leading causes of disability across the world. Consequently, there is a dire need for the validation of translationally-suited animal models incorporating social stress to uncover the etiology of depression. Prairie voles (Microtus ochrogaster) are more translationally relevant than many other rodent models as they display monogamous social and bi-parental behaviors. Therefore, we evaluated whether a novel social defeat stress (SDS) model in male prairie voles induces depression-relevant behavioral outcomes. METHODS: Adult sexually-naïve male prairie voles experienced SDS bouts from a conspecific pair-bonded male aggressor, 10 min per day for 10 consecutive days. Non-stressed controls (same-sex siblings) were housed in similar conditions but never experienced physical stress. Twenty-four h later, voles were evaluated in social interaction, sucrose preference, and Morris water maze tests - behavioral endpoints validated to assess social withdrawal, anhedonia-related behavior, and spatial memory performance, respectively. RESULTS: SDS-exposed voles displayed lower sociability and body weight, decreased preference for a sucrose solution, and impairment of spatial memory retrieval. Importantly, no differences in general locomotor activity were observed as a function of SDS exposure. LIMITATIONS: This study does not include female voles in the experimental design. CONCLUSIONS: We found that repeated SDS exposure, in male prairie voles, results in a depression-relevant phenotype resembling an anhedonia-like outcome (per reductions in sucrose preference) along with social withdrawal and spatial memory impairment - highlighting that the prairie vole is a valuable model with potential to study the neurobiology of social stress-induced depression-related outcomes.


Asunto(s)
Conducta Social , Derrota Social , Animales , Femenino , Masculino , Depresión , Anhedonia , Pradera , Arvicolinae , Sacarosa
3.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961295

RESUMEN

Pain is closely associated with the immune system, which exhibits sexual dimorphism. For these reasons, neuro-immune interactions are suggested to drive sex differences in pain pathophysiology. However, our understanding of peripheral neuro-immune interactions on sex differences in pain resolution remains limited. Here, we have shown, in both a mouse model of inflammatory pain and in humans following traumatic pain, that males had higher levels of interleukin (IL)-10 than females, which were correlated with faster pain resolution. Following injury, we identified monocytes (CD11b+ Ly6C+ Ly6G-F4/80 mid ) as the primary source of IL-10, with IL-10-producing monocytes being more abundant in males than females. In a mouse model, neutralizing IL-10 signaling through antibodies, genetically ablating IL-10R1 in sensory neurons, or depleting monocytes with clodronate all impaired the resolution of pain hypersensitivity in both sexes. Furthermore, manipulating androgen levels in mice reversed the sexual dimorphism of pain resolution and the levels of IL-10-producing monocytes. These results highlight a novel role for androgen-driven peripheral IL-10-producing monocytes in the sexual dimorphism of pain resolution. These findings add to the growing concept that immune cells play a critical role in resolving pain and preventing the transition into chronic pain.

5.
Nat Commun ; 13(1): 6384, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289231

RESUMEN

With an incidence of ~1 in 800 births, Down syndrome (DS) is the most common chromosomal condition linked to intellectual disability worldwide. While the genetic basis of DS has been identified as a triplication of chromosome 21 (HSA21), the genes encoded from HSA21 that directly contribute to cognitive deficits remain incompletely understood. Here, we found that the HSA21-encoded chromatin effector, BRWD1, was upregulated in neurons derived from iPS cells from an individual with Down syndrome and brain of trisomic mice. We showed that selective copy number restoration of Brwd1 in trisomic animals rescued deficits in hippocampal LTP, cognition and gene expression. We demonstrated that Brwd1 tightly binds the BAF chromatin remodeling complex, and that increased Brwd1 expression promotes BAF genomic mistargeting. Importantly, Brwd1 renormalization rescued aberrant BAF localization, along with associated changes in chromatin accessibility and gene expression. These findings establish BRWD1 as a key epigenomic mediator of normal neurodevelopment and an important contributor to DS-related phenotypes.


Asunto(s)
Trastornos del Conocimiento , Síndrome de Down , Ratones , Animales , Síndrome de Down/genética , Síndrome de Down/metabolismo , Variaciones en el Número de Copia de ADN/genética , Modelos Animales de Enfermedad , Trastornos del Conocimiento/genética , Cromatina/genética , Ratones Transgénicos
6.
Nucleic Acids Res ; 50(16): 9548-9567, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36039764

RESUMEN

The AP1 transcription factor ΔFOSB, a splice variant of FOSB, accumulates in the brain in response to chronic insults such as exposure to drugs of abuse, depression, Alzheimer's disease and tardive dyskinesias, and mediates subsequent long-term neuroadaptations. ΔFOSB forms heterodimers with other AP1 transcription factors, e.g. JUND, that bind DNA under control of a putative cysteine-based redox switch. Here, we reveal the structural basis of the redox switch by determining a key missing crystal structure in a trio, the ΔFOSB/JUND bZIP domains in the reduced, DNA-free form. Screening a cysteine-focused library containing 3200 thiol-reactive compounds, we identify specific compounds that target the redox switch, validate their activity biochemically and in cell-based assays, and show that they are well tolerated in different cell lines despite their general potential to bind to cysteines covalently. A crystal structure of the ΔFOSB/JUND bZIP domains in complex with a redox-switch-targeting compound reveals a deep compound-binding pocket near the DNA-binding site. We demonstrate that ΔFOSB, and potentially other, related AP1 transcription factors, can be targeted specifically and discriminately by exploiting unique structural features such as the redox switch and the binding partner to modulate biological function despite these proteins previously being thought to be undruggable.


Asunto(s)
Cisteína , Proteínas Proto-Oncogénicas c-fos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Cisteína/genética , Cisteína/metabolismo , Regulación de la Expresión Génica , ADN/genética , ADN/metabolismo , Oxidación-Reducción , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
7.
J Chem Theory Comput ; 18(4): 2703-2719, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35294204

RESUMEN

Cocaine addiction is a psychosocial disorder induced by the chronic use of cocaine and causes a large number of deaths around the world. Despite decades of effort, no drugs have been approved by the Food and Drug Administration (FDA) for the treatment of cocaine dependence. Cocaine dependence is neurological and involves many interacting proteins in the interactome. Among them, the dopamine (DAT), serotonin (SERT), and norepinephrine (NET) transporters are three major targets. Each of these targets has a large protein-protein interaction (PPI) network, which must be considered in the anticocaine addiction drug discovery. This work presents DAT, SERT, and NET interactome network-informed machine learning/deep learning (ML/DL) studies of cocaine addiction. We collected and analyzed 61 protein targets out of 460 proteins in the DAT, SERT, and NET PPI networks that have sufficiently large existing inhibitor datasets. Utilizing autoencoder (AE) and other ML/DL algorithms, including gradient boosting decision tree (GBDT) and multitask deep neural network (MT-DNN), we built predictive models for these targets with 115 407 inhibitors to predict drug repurposing potential and possible side effects. We further screened their absorption, distribution, metabolism, and excretion, and toxicity (ADMET) properties to search for leads having potential for developing treatments for cocaine addiction. Our approach offers a new systematic protocol for artificial intelligence (AI)-based anticocaine addiction lead discovery.


Asunto(s)
Trastornos Relacionados con Cocaína , Inteligencia Artificial , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Trastornos Relacionados con Cocaína/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Humanos , Aprendizaje Automático , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Estados Unidos
8.
iScience ; 25(2): 103742, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35128353

RESUMEN

Recent clinical studies report that chromosomal 12q24.31 microdeletions are associated with autism spectrum disorder (ASD) and intellectual disability (ID). However, the causality and underlying mechanisms linking 12q24.31 microdeletions to ASD/ID remain undetermined. Here we show Kdm2b, one gene located in chromosomal 12q24.31, plays a critical role in maintaining neural stem cells (NSCs) in the mouse brain. Loss of the CxxC-ZF domain of KDM2B impairs its function in recruiting Polycomb repressive complex 1 (PRC1) to chromatin, resulting in de-repression of genes involved in cell apoptosis, cell-cycle arrest, NSC senescence, and loss of NSC populations in the brain. Of importance, the Kdm2b mutation is sufficient to induce ASD/ID-like behavioral and memory deficits. Thus, our study reveals a critical role of KDM2B in normal brain development, a causality between the Kdm2b mutation and ASD/ID-like phenotypes in mice, and potential molecular mechanisms linking the function of KDM2B-PRC1 in transcriptional regulation to the 12q24.31 microdeletion-associated ASD/ID.

9.
Mol Psychiatry ; 27(4): 2136-2145, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35079125

RESUMEN

Relapse remains a major challenge to the treatment of cocaine addiction. Recent studies suggested that the trace amine-associated receptor 1 (TAAR1) could be a promising target to treat cocaine addiction and relapse; however, the underlying mechanism remains unclear. Here, we aimed to investigate the neural mechanism underlying the role of TAAR1 in the drug priming-induced reinstatement of cocaine-seeking behavior in rats, an animal model of cocaine relapse. We focused on the shell subregion of nucleus accumbens (NAc), a key brain region of the brain reward system. We found that activation of TAAR1 by systemic and intra-NAc shell administration of the selective TAAR1 agonist RO5166017 attenuated drug-induced reinstatement of cocaine-seeking and prevented drug priming-induced CaMKIIα activity in the NAc shell. Activation of TAAR1 dampened the CaMKIIα/GluR1 signaling pathway in the NAc shell and reduced AMPAR-EPSCs on the NAc slice. Microinjection of the selective TAAR1 antagonist EPPTB into the NAc shell enhanced drug-induced reinstatement as well as potentiated CaMKIIα activity in the NAc shell. Furthermore, viral-mediated expression of CaMKIIα in the NAc shell prevented the behavioral effects of TAAR1 activation. Taken together, our findings indicate that TAAR1 regulates drug-induced reinstatement of cocaine-seeking by negatively regulating CaMKIIα activity in the NAc. Our findings elucidate a novel mechanism of TAAR1 in regulating drug-induced reinstatement of cocaine-seeking and further suggests that TAAR1 is a promising target for the treatment of cocaine relapse.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Cocaína/farmacología , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Trastornos Relacionados con Cocaína/metabolismo , Comportamiento de Búsqueda de Drogas , Núcleo Accumbens/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G , Recurrencia , Autoadministración
10.
ACS Chem Neurosci ; 13(3): 296-307, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35020364

RESUMEN

ΔFOSB is a uniquely stable member of the FOS family of immediate early gene AP1 transcription factors. Its accumulation in specific cell types and tissues in response to a range of chronic stimuli is associated with biological phenomena as diverse as memory formation, drug addiction, stress resilience, and immune cell activity. Causal connections between ΔFOSB expression and the physiological and behavioral sequelae of chronic stimuli have been established in rodent and, in some cases, primate models for numerous healthy and pathological states with such preclinical observations often supported by human data demonstrating tissue-specific ΔFOSB expression associated with several specific syndromes. However, the viability of ΔFOSB as a target for therapeutic intervention might be questioned over presumptive concerns of side effects given its expression in such a wide range of cell types and circumstances. Here, we summarize numerous insights from the past three decades of research into ΔFOSB structure, function, mechanisms of induction, and regulation of target genes that support its potential as a druggable target. We pay particular attention to the potential for targeting distinct ΔFOSB isoforms or distinct ΔFOSB-containing multiprotein complexes to achieve cell type or tissue specificity to overcome off-target concerns. We also cover critical gaps in knowledge that currently limit the exploitation of ΔFOSB's therapeutic possibilities and how they may be addressed. Finally, we summarize both current and potential future strategies for generating small molecules or genetic tools for the manipulation of ΔFOSB in the clinic.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas c-fos , Animales , Expresión Génica , Proteínas Proto-Oncogénicas c-fos/metabolismo
11.
J Phys Chem Lett ; 12(45): 11122-11134, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34752088

RESUMEN

No anti-cocaine addiction drugs have been approved by the Food and Drug Administration despite decades of effort. The main challenge is the intricate molecular mechanisms of cocaine addiction, involving synergistic interactions among proteins upstream and downstream of the dopamine transporter. However, it is difficult to study so many proteins with traditional experiments, highlighting the need for innovative strategies in the field. We propose a proteome-informed machine learning (ML) platform for discovering nearly optimal anti-cocaine addiction lead compounds. We analyze proteomic protein-protein interaction networks for cocaine dependence to identify 141 involved drug targets and build 32 ML models for cross-target analysis of more than 60,000 drug candidates or experimental drugs for side effects and repurposing potentials. We further predict their ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties. Our platform reveals that essentially all of the existing drug candidates fail in our cross-target and ADMET screenings but identifies several nearly optimal leads for further optimization.


Asunto(s)
Antipsicóticos/farmacología , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Aprendizaje Automático , Proteoma/efectos de los fármacos , Antipsicóticos/química , Trastornos Relacionados con Cocaína/metabolismo , Humanos , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Proteoma/metabolismo
12.
Hippocampus ; 31(10): 1104-1114, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34263969

RESUMEN

Environmental lighting conditions play a central role in cognitive function, but the underlying mechanisms remain unclear. Utilizing a diurnal rodent model, the Nile grass rat (Arvicanthis niloticus), we previously found that daytime light intensity affects hippocampal function in this species in a manner similar to its effects in humans. Compared to animals housed in a 12:12 h bright light-dark (brLD) cycle, grass rats kept in a 12:12 h dim light-dark (dimLD) cycle showed impaired spatial memory in the Morris water maze (MWM) and reduced CA1 apical dendritic spine density. The present study explored the neural substrates mediating the effects of daylight intensity on hippocampal function focusing on the hypothalamic orexin (hypocretin) system. First, animals housed in dimLD were treated with daily intranasal administration of orexin A peptide over five training days of the MWM task. Compared to vehicle controls, this treatment led to superior spatial memory accompanied by increased phosphorylation of Ca2+ /calmodulin-dependent protein kinase II α and glutamate receptor 1 within the CA1. To assess the role of hippocampal orexinergic signaling, an adeno-associated viral vector (AAV) expressing an orexin receptor 1 (OX1R) shRNA was injected into the dorsal hippocampus targeting the CA1 of animals housed in brLD. AAV-mediated knockdown of OX1R within the hippocampus resulted in deficits in MWM performance and reduced CA1 apical dendritic spine density. These results are consistent with the view that the hypothalamic orexinergic system underlies the modulatory role of daytime illumination on hippocampal function in diurnal mammals.


Asunto(s)
Hipocampo , Fotoperiodo , Animales , Hipocampo/metabolismo , Murinae/metabolismo , Orexinas/metabolismo , Memoria Espacial
13.
Commun Biol ; 4(1): 756, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145365

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disease associated with various gene mutations. Recent genetic and clinical studies report that mutations of the epigenetic gene ASH1L are highly associated with human ASD and intellectual disability (ID). However, the causality and underlying molecular mechanisms linking ASH1L mutations to genesis of ASD/ID remain undetermined. Here we show loss of ASH1L in the developing mouse brain is sufficient to cause multiple developmental defects, core autistic-like behaviors, and impaired cognitive memory. Gene expression analyses uncover critical roles of ASH1L in regulating gene expression during neural cell development. Thus, our study establishes an ASD/ID mouse model revealing the critical function of an epigenetic factor ASH1L in normal brain development, a causality between Ash1L mutations and ASD/ID-like behaviors in mice, and potential molecular mechanisms linking Ash1L mutations to brain functional abnormalities.


Asunto(s)
Trastorno del Espectro Autista/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proteínas de Unión al ADN/genética , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/genética , Animales , Trastorno del Espectro Autista/metabolismo , Modelos Animales de Enfermedad , Desarrollo Embrionario/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
14.
Adv Pharmacol ; 91: 259-292, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34099111

RESUMEN

Depression is one of the leading causes of disability worldwide and a major contributor to the global burden of disease, yet the cellular and molecular etiology of depression remain largely unknown. Major Depressive Disorder (MDD) is associated with a variety of chronic physical inflammatory and autoimmune disorders, and mood disorders may act synergistically with other medical disorders to worsen patient outcomes. Here, we outline the neuroimmune complement, explore the evidence for altered immune system function in MDD, and present some of the potential mechanisms by which immune cells and molecules may drive the onset and course of MDD. These include pro-inflammatory signaling, alterations in the hypothalamic-pituitary-adrenal axis, dysregulation of the serotonergic and noradrenergic neurotransmitter systems, neuroinflammation, and meningeal immune dysfunction. Finally, we discuss the interactions between current antidepressants and the immune system and propose the possibility of immunomodulatory drugs as potential novel antidepressant treatments.


Asunto(s)
Trastorno Depresivo Mayor , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Humanos , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal
15.
Elife ; 102021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34042586

RESUMEN

Understanding how neuronal circuits control nociceptive processing will advance the search for novel analgesics. We use functional imaging to demonstrate that lateral hypothalamic parvalbumin-positive (LHPV) glutamatergic neurons respond to acute thermal stimuli and a persistent inflammatory irritant. Moreover, their chemogenetic modulation alters both pain-related behavioral adaptations and the unpleasantness of a noxious stimulus. In two models of persistent pain, optogenetic activation of LHPV neurons or their ventrolateral periaqueductal gray area (vlPAG) axonal projections attenuates nociception, and neuroanatomical tracing reveals that LHPV neurons preferentially target glutamatergic over GABAergic neurons in the vlPAG. By contrast, LHPV projections to the lateral habenula regulate aversion but not nociception. Finally, we find that LHPV activation evokes additive to synergistic antinociceptive interactions with morphine and restores morphine antinociception following the development of morphine tolerance. Our findings identify LHPV neurons as a lateral hypothalamic cell type involved in nociception and demonstrate their potential as a target for analgesia.


Asunto(s)
Conducta Animal , Área Hipotalámica Lateral/fisiopatología , Nocicepción , Dolor/fisiopatología , Dolor/psicología , Analgésicos Opioides/uso terapéutico , Animales , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Señalización del Calcio , Modelos Animales de Enfermedad , Tolerancia a Medicamentos , Femenino , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Área Hipotalámica Lateral/efectos de los fármacos , Área Hipotalámica Lateral/metabolismo , Masculino , Ratones Endogámicos C57BL , Microscopía Fluorescente , Morfina/farmacología , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología , Técnicas de Trazados de Vías Neuroanatómicas , Nocicepción/efectos de los fármacos , Optogenética , Dolor/metabolismo , Dolor/prevención & control , Parvalbúminas/genética , Parvalbúminas/metabolismo
16.
Sci Rep ; 11(1): 7758, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833356

RESUMEN

The objective of this study was to evaluate whether juvenile fluoxetine (FLX) exposure induces long-term changes in baseline responses to anxiety-inducing environments, and if so, whether its re-exposure in adulthood would ameliorate this anxiety-like phenotype. An additional goal was to assess the impact of adolescent FLX pretreatment, and its re-exposure in adulthood, on serotonin transporters (5-HTT) and brain-derived-neurotrophic-factor (BDNF)-related signaling markers (TrkB-ERK1/2-CREB-proBDNF-mBDNF) within the hippocampus and prefrontal cortex. To do this, female C57BL/6 mice were exposed to FLX in drinking water during postnatal-days (PD) 35-49. After a 21-day washout-period (PD70), mice were either euthanized (tissue collection) or evaluated on anxiety-related tests (open field, light/dark box, elevated plus-maze). Juvenile FLX history resulted in a persistent avoidance-like profile, along with decreases in BDNF-signaling markers, but not 5-HTTs or TrkB receptors, within both brain regions. Interestingly, FLX re-exposure in adulthood reversed the enduring FLX-induced anxiety-related responses across all behavioral tasks, while restoring ERK2-CREB-proBDNF markers to control levels and increasing mBDNF within the prefrontal cortex, but not the hippocampus. Collectively, these results indicate that adolescent FLX history mediates neurobehavioral adaptations that endure into adulthood, which are indicative of a generalized anxiety-like phenotype, and that this persistent effect is ameliorated by later-life FLX re-exposure, in a prefrontal cortex-specific manner.


Asunto(s)
Ansiedad/tratamiento farmacológico , Fluoxetina/administración & dosificación , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Animales , Conducta Animal/efectos de los fármacos , Femenino , Ratones , Ratones Endogámicos C57BL
17.
Neuron ; 109(9): 1479-1496.e6, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33765445

RESUMEN

The Akt family of kinases exerts many of its cellular effects via the activation of the mammalian target of rapamycin (mTOR) kinase through a series of intermediary proteins. Multiple lines of evidence have identified Akt-family kinases as candidate schizophrenia and bipolar disorder genes. Although dysfunction of the prefrontal cortex (PFC) is a key feature of both schizophrenia and bipolar disorder, no studies have comprehensively assessed potential alterations in Akt-mTOR pathway activity in the PFC of either disorder. Here, we examined the activity and expression profile of key proteins in the Akt-mTOR pathway in bipolar disorder and schizophrenia homogenates from two different PFC subregions. Our findings identify reduced Akt-mTOR PFC signaling in a subset of bipolar disorder subjects. Using a reverse-translational approach, we demonstrated that Akt hypofunction in the PFC is sufficient to give rise to key cognitive phenotypes that are paralleled by alterations in synaptic connectivity and function.


Asunto(s)
Trastorno Bipolar/metabolismo , Disfunción Cognitiva/metabolismo , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Trastorno Bipolar/patología , Trastorno Bipolar/fisiopatología , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Femenino , Humanos , Masculino , Neuronas/patología , Corteza Prefrontal/patología , Corteza Prefrontal/fisiopatología
18.
Nat Commun ; 11(1): 4484, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32901027

RESUMEN

Chronic stress is a key risk factor for mood disorders like depression, but the stress-induced changes in brain circuit function and gene expression underlying depression symptoms are not completely understood, hindering development of novel treatments. Because of its projections to brain regions regulating reward and anxiety, the ventral hippocampus is uniquely poised to translate the experience of stress into altered brain function and pathological mood, though the cellular and molecular mechanisms of this process are not fully understood. Here, we use a novel method of circuit-specific gene editing to show that the transcription factor ΔFosB drives projection-specific activity of ventral hippocampus glutamatergic neurons causing behaviorally diverse responses to stress. We establish molecular, cellular, and circuit-level mechanisms for depression- and anxiety-like behavior in response to stress and use circuit-specific gene expression profiling to uncover novel downstream targets as potential sites of therapeutic intervention in depression.


Asunto(s)
Reacción de Prevención/fisiología , Hipocampo/fisiología , Proteínas Proto-Oncogénicas c-fos/fisiología , Animales , Ansiedad/metabolismo , Conducta Animal/fisiología , Técnicas de Inactivación de Genes , Silenciador del Gen , Hipocampo/anatomía & histología , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/deficiencia , Proteínas Proto-Oncogénicas c-fos/genética , Conducta Social , Estrés Psicológico
19.
Am J Physiol Gastrointest Liver Physiol ; 319(6): G655-G668, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32996781

RESUMEN

Early-life adversity contributes to the development of functional bowel disorders later in life through unresolved mechanisms. Here, we tested the hypothesis that early-life adversity alters anatomical and functional interactions between mast cells and enteric glia. The effects of early-life stress were studied using the neonatal maternal separation (NMS) stress mouse model. Anatomical relationships between mast cells and enteric glia were assessed using immunohistochemistry and mast cell reporter mice (Mcpt5Cre;GCaMP5g-tdT). Immunohistochemistry was used to assess the expression of histamine, histamine 1 (H1) receptors, and glial fibrillary acidic protein. Functional responses of glia to mast cell mediators were assessed in calcium imaging experiments using Sox10CreERT2;GCaMP5g-tdT mice and cultured human enteric glial cells. NMS increases mast cell numbers at the level of the myenteric plexus and their proximity to myenteric ganglia. Myenteric glia respond to mediators released by activated mast cells that are blocked by H1 receptor antagonists in mice and humans and by blocking neuronal activity with tetrodotoxin in mouse tissue. Histamine replicates the effects of mast cell supernatants on enteric glia, and NMS increases histamine production by mast cells. NMS reduces glial responses to mast cell mediators in mouse tissue, while potentiating responses in cultured human enteric glia. NMS increases myenteric glial fibrillary acidic protein expression and reduces glial process length but does not cause neurodegeneration. Histamine receptor expression is not altered by NMS and is localized to neurons in mice, but glia in humans. Early-life stress increases the potential for interactions between enteric glia and mast cells, and histamine is a potential mediator of mast cell-glial interactions through H1 receptors. We propose that glial-mast cell signaling is a mechanism that contributes to enteric neuroplasticity driven by early-life adversity.NEW & NOTEWORTHY Early-life adversity places an individual at risk for developing functional gastrointestinal disorders later in life through unknown mechanisms. Here, we show that interactions between mast cells and glia are disrupted by early-life stress in mice and that histamine is a potential mediator of mast cell-glial interactions.


Asunto(s)
Histamina/fisiología , Acontecimientos que Cambian la Vida , Mastocitos/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Animales , Animales Recién Nacidos , Recuento de Células , Células Cultivadas , Quimasas/genética , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Antagonistas de los Receptores Histamínicos H1/farmacología , Humanos , Privación Materna , Ratones , Ratones Endogámicos C57BL , Plexo Mientérico/citología , Plexo Mientérico/metabolismo , Embarazo , Receptores Histamínicos H1/metabolismo , Estrés Psicológico/fisiopatología
20.
Curr Res Struct Biol ; 2: 1-13, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32542236

RESUMEN

ΔFosB is a highly stable transcription factor that accumulates in specific brain regions upon chronic exposure to drugs of abuse, stress, or seizures, and mediates lasting behavioral responses. ΔFosB reportedly heterodimerizes with JunD forming a canonical bZIP leucine zipper coiled coil that clamps onto DNA. However, the striking accumulation of ΔFosB protein in brain upon chronic insult has brought its molecular status into question. Here, we demonstrate through a series of crystal structures that the ΔFosB bZIP domain self-assembles into stable oligomeric assemblies that defy the canonical arrangement. The ΔFosB bZIP domain also self-assembles in solution, and in neuron-like Neuro 2a cells it is trapped into molecular arrangements that are consistent with our structures. Our data suggest that, as ΔFosB accumulates in brain in response to chronic insult, it forms non-canonical assemblies. These species may be at the root of ΔFosB's striking protein stability, and its unique transcriptional and behavioral consequences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA