Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Chemistry ; : e202403003, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304519

RESUMEN

In 1973, two major discoveries changed the face of selenium chemistry: the identification of the first mammal selenoenzyme, glutathione peroxidase 1, and the discovery of the synthetic utility of the so-called selenoxide elimination.  While the chemical mechanism behind the catalytic activity of glutathione peroxidases appears to be mostly unveiled, little is known about the mechanisms of other selenoproteins and, for some of them, even the function lies in the dark. In chemistry, the capacity of organoselenides of catalyzing hydrogen peroxide activation for the practical manipulation of organic functional groups has been largely explored, and some mechanistic details have been clearly elucidated. As a paradox, despite the long-standing experience in the field, the nature of the active oxidant in various reactions still remains matter of debate. While many successes characterize these fields, the pharmacological use of organoselenides still lacks any true application, and while some organoselenides were found to be non-toxic and safe to use, to date no therapeutically approved use was granted. In this review, some fundamental and chronologically aligned topics spanning organoselenium biochemistry, chemistry and pharmacology are discussed, focusing on the current mechanistic picture describing their activity as either bioactive compounds or catalysts.

2.
BMC Neurosci ; 25(1): 42, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210265

RESUMEN

Genetic and environmental factors have been linked with neurodegeneration, especially in the elderly. Yet, efforts to impede neurodegenerative processes have at best addressed symptoms instead of underlying pathologies. The gap in the understanding of neuro-behavioral plasticity is consistent from insects to mammals, and cockroaches have been proven to be effective models for studying the toxicity mechanisms of various chemicals. We therefore used head injection of 74 and 740 nmol STZ in Nauphoeta cinerea to elucidate the mechanisms of chemical-induced neurotoxicity, as STZ is known to cross the blood-brain barrier. Neurolocomotor assessment was carried out in a new environment, while head homogenate was used to estimate metabolic, neurotransmitter and redox activities, followed by RT-qPCR validation of relevant cellular signaling. STZ treatment reduced the distance and maximum speed travelled by cockroaches, and increased glucose levels while reducing triglyceride levels in neural tissues. The activity of neurotransmitter regulators - AChE and MAO was exacerbated, with concurrent upregulation of glucose sensing and signaling, and increased mRNA levels of redox regulators and inflammation-related genes. Consequently, STZ neurotoxicity is conserved in insects, with possible implications for using N. cinerea to target the multi-faceted mechanisms of neurodegeneration and test potential anti-neurodegenerative agents.


Asunto(s)
Acetilcolinesterasa , Monoaminooxidasa , Oxidación-Reducción , Estreptozocina , Animales , Monoaminooxidasa/metabolismo , Oxidación-Reducción/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Cucarachas , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Conducta Animal/efectos de los fármacos
4.
Neurochem Res ; 49(11): 2988-3005, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39060769

RESUMEN

Aluminum (Al) is known to induce neurotoxic effects, potentially contributing to Alzheimer's disease (AD) pathogenesis. Recent studies suggest that epigenetic modification may contribute to Al neurotoxicity, although the mechanisms are still debatable. Therefore, the objective of the present study was to summarize existing data on the involvement of epigenetic mechanisms in Al-induced neurotoxicity, especially AD-type pathology. Existing data demonstrate that Al exposure induces disruption in DNA methylation, histone modifications, and non-coding RNA expression in brains. Alterations in DNA methylation following Al exposure were shown to be mediated by changes in expression and activity of DNA methyltransferases (DNMTs) and ten-eleven translocation proteins (TETs). Al exposure was shown to reduce histone acetylation by up-regulating expression of histone deacetylases (HDACs) and impair histone methylation, ultimately contributing to down-regulation of brain-derived neurotrophic factor (BDNF) expression and activation of nuclear factor κB (NF-κB) signaling. Neurotoxic effects of Al exposure were also associated with aberrant expression of non-coding RNAs, especially microRNAs (miR). Al-induced patterns of miR expression were involved in development of AD-type pathology by increasing amyloid ß (Aß) production through up-regulation of Aß precursor protein (APP) and ß secretase (BACE1) expression (down-regulation of miR-29a/b, miR-101, miR-124, and Let-7c expression), increasing in neuroinflammation through NF-κB signaling (up-regulation of miR-9, miR-125b, miR-128, and 146a), as well as modulating other signaling pathways. Furthermore, reduced global DNA methylation, altered histone modification, and aberrant miRNA expression were associated with cognitive decline in Al-exposed subjects. However, further studies are required to evaluate the contribution of epigenetic mechanisms to Al-induced neurotoxicity and/or AD development.


Asunto(s)
Aluminio , Enfermedad de Alzheimer , Epigénesis Genética , ARN no Traducido , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Epigénesis Genética/efectos de los fármacos , Humanos , Aluminio/toxicidad , Animales , ARN no Traducido/metabolismo , ARN no Traducido/genética , Metilación de ADN/efectos de los fármacos , MicroARNs/metabolismo , MicroARNs/genética , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/etiología
5.
BMC Res Notes ; 17(1): 188, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970085

RESUMEN

Heavy metals are encountered in nature, and are used in several human endeavors, including in dental fillings. It is well known that the safety of metals depends on their chemical form, as well as the dose and route through which biological systems are exposed to them. Here, we used the Nauphoeta cinerea model to examine the mechanism by which salts of the heavy metals used in dental fillings - silver and mercury - exert their neurotoxicity. Nymphs exposed to heavy metals presented with reduced motor and exploratory abilities as they spent more time immobile, especially in the periphery of a novel object, and covered less distance compared with control nymphs. Exposure to AgNO3 and HgCl2 also exacerbated levels of oxidative stress markers (MDA & ROS) and the neurotransmitter regulators - AChE and MAO, while reducing antioxidant activity markers, both in biochemical (thiol & GST) and RT-qPCR (TRX, GST, SOD, Catalase) examinations, in neural tissues of the cockroach. The observed disruptions in neurolocomotor control, synaptic transmission and redox balance explain how heavy metal salts may predispose organisms to neurological disorders.


Asunto(s)
Oxidación-Reducción , Estrés Oxidativo , Animales , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Mercurio/toxicidad , Plata/farmacología , Plata/toxicidad , Neurotransmisores/metabolismo , Acetilcolinesterasa/metabolismo , Ninfa/efectos de los fármacos , Ninfa/metabolismo , Monoaminooxidasa/metabolismo , Conducta Animal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Nitrato de Plata/farmacología , Cloruro de Mercurio/toxicidad
6.
Mol Neurobiol ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012446

RESUMEN

The objective of the present review was to provide a timely update on the molecular mechanisms underlying the beneficial role of Se in Alzheimer's disease pathogenesis, and discuss the potential role of gut microbiota modulation in this neuroprotective effect. The existing data demonstrate that selenoproteins P, M, S, R, as well as glutathione peroxidases and thioredoxin reductases are involved in regulation of Aß formation and aggregation, tau phosphorylation and neurofibrillary tangles formation, as well as mitigate the neurotoxic effects of Aß and phospho-tau. Correspondingly, supplementation with various forms of Se in cellular and animal models of AD was shown to reduce Aß formation, tau phosphorylation, reverse the decline in brain antioxidant levels, inhibit neuronal oxidative stress and proinflammatory cytokine production, improve synaptic plasticity and neurogenesis, altogether resulting in improved cognitive functions. In addition, most recent findings demonstrate that these neuroprotective effects are associated with Se-induced modulation of gut microbiota. In animal models of AD, Se supplementation was shown to improve gut microbiota biodiversity with a trend to increased relative abundance of Lactobacillus, Bifidobacterium, and Desulfivibrio, while reducing that of Lachnospiracea_NK4A136, Rikenella, and Helicobacter. Moreover, the relative abundance of Se-affected taxa was significantly associated with Aß accumulation, tau phosphorylation, neuronal oxidative stress, and neuroinflammation, indicative of the potential role of gut microbiota to mediate the neuroprotective effects of Se in AD. Hypothetically, modulation of gut microbiota along with Se supplementation may improve the efficiency of the latter in AD, although further detailed laboratory and clinical studies are required.

7.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167324, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-38925484

RESUMEN

Responsible for COVID-19, SARS-CoV-2 is a coronavirus in which contagious variants continue to appear. Therefore, some population groups have demonstrated greater susceptibility to contagion and disease progression. For these reasons, several researchers have been studying the SARS-CoV-2/human interactome to understand the pathophysiology of COVID-19 and develop new pharmacological strategies. D. melanogaster is a versatile animal model with approximately 90 % human protein orthology related to SARS-CoV-2/human interactome and is widely used in metabolic studies. In this context, our work assessed the potential interaction between human proteins (ZNF10, NUP88, BCL2L1, UBC9, and RBX1) and their orthologous proteins in D. melanogaster (gl, Nup88, Buffy, ubc9, and Rbx1a) with proteins from SARS-CoV-2 (nsp3, nsp9, E, ORF7a, N, and ORF10) using computational approaches. Our results demonstrated that all the proteins have the potential to interact, and we compared the binding sites between humans and fruit flies. The stability and consistency in the structure of the gl_nsp3 complex, specifically, could be crucial for its specific biological functions. Lastly, to enhance the understanding of the influence of host factors on coronavirus infection, we also analyse the mRNA expression of the five genes (mbo, gl, lwr, Buffy, and Roc1a) responsible for encoding the fruit fly proteins. Briefly, we demonstrated that those genes were differentially regulated according to diets, sex, and age. Two groups showed higher positive gene regulation than others: females in the HSD group and males in the aging group, which could imply a higher virus-host susceptibility. Overall, while preliminary, our work contributes to the understanding of host defense mechanisms and potentially identifies candidate proteins and genes for in vivo viral studies against SARS-CoV-2.


Asunto(s)
COVID-19 , Drosophila melanogaster , ARN Mensajero , SARS-CoV-2 , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Animales , Humanos , COVID-19/virología , COVID-19/metabolismo , COVID-19/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/virología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Femenino , Masculino , Interacciones Huésped-Patógeno/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
8.
Chempluschem ; 89(9): e202400252, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38842473

RESUMEN

The reactivity of Zn2+ tetrahedral complexes with H2O2 was investigated in silico, as a first step in their disruption process. The substrates were chosen to represent the cores of three different zinc finger protein motifs, i. e., a Zn2+ ion coordinated to four cysteines (CCCC), to three cysteines and one histidine (CCCH), and to two cysteines and two histidines (CCHH). The cysteine and histidine ligands were further simplified to methyl thiolate and imidazole, respectively. H2O2 was chosen as an oxidizing agent due to its biological role as a metabolic product and species involved in signaling processes. The mechanism of oxidation of a coordinated cysteinate to sulfenate-κS and the trends for the different substrates were rationalized through activation strain analysis and energy decomposition analysis in the framework of scalar relativistic Density Functional Theory (DFT) calculations at ZORA-M06/TZ2P ae // ZORA-BLYP-D3(BJ)/TZ2P. CCCC is oxidized most easily, an outcome explained considering both electrostatic and orbital interactions. The isomerization to sulfenate-κO was attempted to assess whether this step may affect the ligand dissociation; however, it was found to introduce a kinetic barrier without improving the energetics of the dissociation. Lastly, ligand exchange with free thiolates and selenolates was investigated as a trigger for ligand dissociation, possibly leading to metal ejection; molecular docking simulations also support this hypothesis.


Asunto(s)
Modelos Moleculares , Oxidación-Reducción , Dedos de Zinc , Zinc , Zinc/química , Peróxido de Hidrógeno/química , Teoría Funcional de la Densidad , Cisteína/química , Histidina/química , Ligandos
9.
Food Chem Toxicol ; 188: 114685, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663763

RESUMEN

The objective of the present review is to discuss epidemiological evidence demonstrating the association between toxic metal (Cd, Pb, Hg, As, Sn, Ti, Tl) exposure and retinal pathology, along with the potential underlying molecular mechanisms. Epidemiological studies demonstrate that Cd, and to a lesser extent Pb exposure, are associated with age-related macular degeneration (AMD), while the existing evidence on the levels of these metals in patients with diabetic retinopathy is scarce. Epidemiological data on the association between other toxic metals and metalloids including mercury (Hg) and arsenic (As), are limited. Clinical reports and laboratory in vivo studies have shown structural alterations in different layers of retina following metal exposure. Examination of retina samples demonstrate that toxic metals can accumulate in the retina, and the rate of accumulation appears to increase with age. Experimental studies in vivo and in vitro studies in APRE-19 and D407 cells demonstrate that toxic metal exposure may cause retinal damage through oxidative stress, apoptosis, DNA damage, mitochondrial dysfunction, endoplasmic reticulum stress, impaired retinogenesis, and retinal inflammation. However, further epidemiological as well as laboratory studies are required for understanding the underlying molecular mechanisms and identifying of the potential therapeutic targets and estimation of the dose-response effects.


Asunto(s)
Metales Pesados , Retina , Humanos , Retina/efectos de los fármacos , Retina/patología , Retina/metabolismo , Metales Pesados/toxicidad , Animales , Estrés Oxidativo/efectos de los fármacos , Degeneración Macular/inducido químicamente
10.
Neurochem Res ; 49(4): 1076-1092, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38267690

RESUMEN

Neurotoxicity associated with chemotherapy is a debilitating side effect of cancer management in humans which reportedly involves inflammatory and oxidative stress responses. Diphenyl diselenide (DPDS) is an organoselenium compound which exhibits its anti-tumoral, anti-oxidant, anti-inflammatory and anti-mutagenic effects. Nevertheless, its possible effect on chemotherapy-induced neurotoxicity is not known. Using rat model, we probed the behavioral and biochemical effects accompanying administration of antineoplastic agent doxorubicin (7.5 mg/kg) and DPDS (5 and 10 mg/kg). Anxiogenic-like behavior, motor and locomotor insufficiencies associated with doxorubicin were considerably abated by both DPDS doses with concomitant enhancement in exploratory behavior as demonstrated by reduced heat maps intensity and enhanced track plot densities. Moreover, with exception of cerebral glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, biochemical data demonstrated reversal of doxorubicin-mediated decline in cerebral and cerebellar antioxidant status indices and the increase in acetylcholinesterase (AChE) activity by both doses of DPDS. Also, cerebellar and cerebral lipid peroxidation, hydrogen peroxide as well as reactive oxygen and nitrogen species levels were considerably diminished in rats administered doxorubicin and DPDS. In addition, DPDS administration abated myeloperoxidase activity, tumour necrosis factor alpha and nitric oxide levels along with caspase-3 activity in doxorubicin-administered rats. Chemoprotection of doxorubicin-associated neurotoxicity by DPDS was further validated by histomorphometry and histochemical staining. Taken together, DPDS through offsetting of oxido-inflammatory stress and caspase-3 activation elicited neuroprotection in doxorubicin-treated rats.


Asunto(s)
Compuestos de Organoselenio , Temefós , Humanos , Ratas , Animales , Caspasa 3 , Temefós/farmacología , Acetilcolinesterasa , Estrés Oxidativo , Antioxidantes/farmacología , Derivados del Benceno/farmacología , Derivados del Benceno/uso terapéutico , Derivados del Benceno/química , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/uso terapéutico , Glutatión/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Doxorrubicina/toxicidad
11.
J Trace Elem Med Biol ; 83: 127397, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38290269

RESUMEN

The objective of the present study is assessment of serum trace element and amino acid levels in non-alcoholic fatty liver disease (NAFLD) patients with subsequent evaluation of its independent associations with markers of liver injury and metabolic risk. MATERIALS AND METHODS: 140 women aged 20-90 years old with diagnosed NAFLD and 140 healthy women with a respective age range were enrolled in the current study. Analysis of serum and hair levels of trace elements and minerals was performed with inductively-coupled plasma mass-spectrometry (ICP-MS). Serum amino acid concentrations were evaluated by high-pressure liquid chromatography (HPLC) with UV-detection. In addition, routine biochemical parameters including liver damage markers, alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT), were assessed spectrophotometrically. RESULTS: The findings demonstrated that patients with NAFLD were characterized by higher ALT, GGT, lactate dehydrogenase (LDH) and cholinesterase (CE) activity, as well as increased levels of total cholesterol, low-density lipoprotein cholesterol, triglycerides, and uric acid. NAFLD patients were characterized by reduced serum and hair Co, Se, and Zn levels, as well as hair Cu content and serum Mn concentrations in comparison to controls. Circulating Ala, Cit, Glu, Gly, Ile, Leu, Phe, and Tyr levels in NAFLD patients exceeded those in the control group. Multiple linear regression demonstrated that serum and hair trace element levels were significantly associated with circulating amino acid levels after adjustment for age, BMI, and metabolic parameters including liver damage markers. CONCLUSION: It is proposed that altered trace element handling may contribute to NAFLD pathogenesis through modulation of amino acid metabolism.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Oligoelementos , Adulto , Humanos , Femenino , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Oligoelementos/análisis , Aminoácidos , Minerales , Colesterol
12.
Int J Mol Med ; 53(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38063255

RESUMEN

The objective of the present review was to summarize the molecular mechanisms associated with the effects of the vitamins A, C, E and K, and group B vitamins on bone and their potential roles in the development of osteoporosis. Epidemiological findings have demonstrated an association between vitamin deficiency and a higher risk of developing osteoporosis; vitamins are positively related to bone health upon their intake at the physiological range. Excessive vitamin intake can also adversely affect bone formation, as clearly demonstrated for vitamin A. Vitamins E (tocopherols and tocotrienols), K2 (menaquinones 4 and 7) and C have also been shown to promote osteoblast development through bone morphogenetic protein (BMP)/Smad and Wnt/ß­catenin signaling, as well as the TGFß/Smad pathway (α­tocopherol). Vitamin A metabolite (all­trans retinoic acid) exerts both inhibitory and stimulatory effects on BMP­ and Wnt/ß­catenin­mediated osteogenesis at the nanomolar and micromolar range, respectively. Certain vitamins significantly reduce receptor activator of nuclear factor kappa­B ligand (RANKL) production and RANKL/RANK signaling, while increasing the level of osteoprotegerin (OPG), thus reducing the RANKL/OPG ratio and exerting anti­osteoclastogenic effects. Ascorbic acid can both promote and inhibit RANKL signaling, being essential for osteoclastogenesis. Vitamin K2 has also been shown to prevent vascular calcification by activating matrix Gla protein through its carboxylation. Therefore, the maintenance of a physiological intake of vitamins should be considered as a nutritional strategy for the prevention of osteoporosis.


Asunto(s)
Osteoporosis , Vitaminas , Humanos , Vitaminas/farmacología , Colecalciferol/farmacología , beta Catenina/metabolismo , Vitamina A , Densidad Ósea , Osteoporosis/metabolismo , Vitamina K , Proteínas Morfogenéticas Óseas , Vía de Señalización Wnt
13.
Biometals ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973679

RESUMEN

Methylmercury (MeHg) remains a global public health issue because of its frequent presence in human food sources obtained from the water. The excretion of MeHg in humans occurs slowly with a biological half-time of 32-47 days. Short-term MeHg exposure may cause long-lasting neurotoxicity. The excretion through feces is a major route in the demethylation of MeHg. Accumulating evidence suggests that the intestinal microbiota plays an important role in the demethylation of MeHg, thereby protecting the host from neurotoxic effects. Here, we discuss recent developments on the role of intestinal microbiota in MeHg metabolism, based on in vitro cell culture experiments, experimental animal studies and human investigations. Demethylation by intestinal bacteria is the rate-limiting step in MeHg metabolism and elimination. The identity of bacteria strains responsible for this biotransformation is currently unknown; however, the non-homogenous distribution of intestinal microbiota may lead to different demethylation rates in the intestinal tract. The maintenance of intestinal barrier function by intestinal microbiota may afford protection against MeHg-induced neurotoxicity, which warrant future investigations. We also discuss studies investigating the effects of MeHg exposure on the population structural stability of intestinal microbiota in several host species. Although this is an emerging area in metal toxicity, current research suggests that a change in certain phyla in the intestinal microbiota may indicate MeHg overexposure.

14.
Environ Sci Pollut Res Int ; 30(51): 110340-110351, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783994

RESUMEN

Perfluorooctanoic acid (PFOA) is a persistent organic contaminant with potential health threats to both animals and humans. However, the impact of PFOA on insects, which play significant roles in ecosystems, is understudied. We evaluated the toxicological impact of ecologically relevant concentrations of PFOA (0, 25, 50, 100, and 200 µg L-1) on Nauphoeta cinerea nymphs following exposure for 42 consecutive days. We analyzed the behavior of the insects with automated video-tracking software and processed the head, midgut, and fat body for biochemical assays. PFOA-exposed insects exhibited significant reductions in locomotory abilities and an increase in freezing time. Furthermore, PFOA exposure reduced acetylcholinesterase activity in the insect head. PFOA exposure increased the activities of superoxide dismutase, glutathione peroxidase, and catalase in the head and midgut, but decreased them in the fat body. PFOA also significantly increased glutathione-S transferase activity, while decreasing glutathione levels in the head, midgut, and fat body. Additionally, PFOA exposure increased reactive oxygen and nitrogen species, nitric oxide, lipid peroxidation, and protein carbonyl contents in the head, midgut, and fat body of the insects. In conclusion, our findings indicate that PFOA exposure poses an ecological risk to Nauphoeta cinerea.


Asunto(s)
Cucarachas , Fluorocarburos , Humanos , Animales , Ecosistema , Acetilcolinesterasa/metabolismo , Estrés Oxidativo , Caprilatos , Fluorocarburos/metabolismo , Glutatión/metabolismo , Cucarachas/metabolismo
15.
Cells ; 12(17)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37681856

RESUMEN

Mitochondria play a crucial role in cellular respiration, ATP production, and the regulation of various cellular processes. Mitochondrial dysfunctions have been directly linked to pathophysiological conditions, making them a significant target of interest in toxicological research. In recent years, there has been a growing need to understand the intricate effects of xenobiotics on human health, necessitating the use of effective scientific research tools. Caenorhabditis elegans (C. elegans), a nonpathogenic nematode, has emerged as a powerful tool for investigating toxic mechanisms and mitochondrial dysfunction. With remarkable genetic homology to mammals, C. elegans has been used in studies to elucidate the impact of contaminants and drugs on mitochondrial function. This review focuses on the effects of several toxic metals and metalloids, drugs of abuse and pesticides on mitochondria, highlighting the utility of C. elegans as a model organism to investigate mitochondrial dysfunction induced by xenobiotics. Mitochondrial structure, function, and dynamics are discussed, emphasizing their essential role in cellular viability and the regulation of processes such as autophagy, apoptosis, and calcium homeostasis. Additionally, specific toxins and toxicants, such as arsenic, cadmium, and manganese are examined in the context of their impact on mitochondrial function and the utility of C. elegans in elucidating the underlying mechanisms. Furthermore, we demonstrate the utilization of C. elegans as an experimental model providing a promising platform for investigating the intricate relationships between xenobiotics and mitochondrial dysfunction. This knowledge could contribute to the development of strategies to mitigate the adverse effects of contaminants and drugs of abuse, ultimately enhancing our understanding of these complex processes and promoting human health.


Asunto(s)
Caenorhabditis elegans , Xenobióticos , Humanos , Animales , Mitocondrias , Respiración de la Célula , Apoptosis , Mamíferos
16.
Toxicology ; 497-498: 153630, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37709162

RESUMEN

Data from epidemiological and experimental studies have evidenced that some chemical contaminants in food elicit their harmful effects by targeting the central nervous system. Ochratoxin A is a foodborne mycotoxin produced by Aspergillus and Penicillium species. Research on neurotoxicity associated with ochratoxin A exposure has increased greatly in recent years. The present review accrued substantial evidence on the neurotoxicity associated with ochratoxin A exposure as well as discussed notable susceptible targets of noxious ochratoxin A at molecular, cellular and genetic levels. Specifically, the neurotoxic mechanisms associated with ochratoxin A exposure were unequivocally unraveled in vitro using human neuroblastoma SH-SY5Y cells, mouse hippocampal HT22 cells, human astrocyte (NHA-SV40LT) cells and microglia cells as well as in vivo using mammalian and non-mammalian models. Data from human biomonitoring studies on plasma ochratoxin A levels in patients with neurodegenerative diseases with some age- and sex-related responses were also highlighted. Moreover, the neurotherapeutic mechanisms of some naturally occurring bioactive compounds against ochratoxin A neurotoxicity are reviewed. Collectively, accumulated data from literature demonstrate that ochratoxin A is a neurotoxin with potential pathological involvement in neurological disorders. Cutting edge original translational research on the development of neurotherapeutics for neurotoxicity associated with foodborne toxicants including ochratoxin A is indispensable.


Asunto(s)
Micotoxinas , Neuroblastoma , Síndromes de Neurotoxicidad , Ocratoxinas , Humanos , Ratones , Animales , Ocratoxinas/toxicidad , Micotoxinas/toxicidad , Síndromes de Neurotoxicidad/etiología , Mamíferos
17.
Environ Toxicol ; 38(12): 3006-3017, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37584562

RESUMEN

Metoprolol, a drug for hypertension and cardiovascular diseases, has become a contaminant of emerging concern because of its frequent detection in various environmental matrices globally. The dwindling in the biodiversity of useful insects owing to increasing presence of environmental chemicals is currently a great interest to the scientific community. In the current research, the toxicological impact of ecologically relevant concentrations of metoprolol at 0, 0.05, 0.1, 0.25, and 0.5 µg/L on Nauphoeta cinerea nymphs following exposure for 42 consecutive days was evaluated. The insects' behavior was analyzed with automated video-tracking software (ANY-maze, Stoelting Co, USA) while biochemical assays were done using the midgut, head and fat body. Metoprolol-exposed nymphs exhibited significant diminutions in the path efficiency, mobility time, distance traveled, body rotation, maximum speed and turn angle cum more episodes, and time of freezing. In addition, the heat maps and track plots confirmed the metoprolol-mediated wane in the exploratory and locomotor fitness of the insects. Compared with control, metoprolol exposure decreased acetylcholinesterase activity in insects head. Antioxidant enzymes activities and glutathione level were markedly decreased whereas indices of inflammation and oxidative injury to proteins and lipids were significantly increased in head, midgut and fat body of metoprolol-exposed insects. Taken together, metoprolol exposure induces neurobehavioral insufficiency and oxido-inflammatory injury in N. cinerea nymphs. These findings suggest the potential health effects of environmental contamination with metoprolol on ecologically and economically important nontarget insects.


Asunto(s)
Cucarachas , Metoprolol , Animales , Metoprolol/toxicidad , Metoprolol/metabolismo , Acetilcolinesterasa/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , Cucarachas/metabolismo
18.
Environ Res ; 237(Pt 1): 116869, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37567382

RESUMEN

Aflatoxin B1 (AFB1), a dietary toxin from the mold Aspergillus species, is well acknowledged to elicit extra-hepatic toxicity in both animals and humans. The neurotoxicity of AFB1 has become a global public health concern. Contemporary research on how AFB1 enters the brain to elicit neuronal dysregulation leading to noxious neurological outcomes has increased greatly in recent years. The current review discusses several neurotoxic outcomes and susceptible targets of AFB1 toxicity at cellular, molecular and genetic levels. Specifically, neurotoxicity studies involving the use of brain homogenates, neuroblastoma cell line IMR-32, human brain microvascular endothelial cells, microglial cells, and astrocytes, as well as mammalian and non-mammalian models to unravel the mechanisms associated with AFB1 exposure are highlighted. Further, some naturally occurring bioactive compounds with compelling therapeutic effects on AFB1-induced neurotoxicity are reviewed. In conclusion, available data from literature highlight AFB1 as a neurotoxin and its possible pathological contribution to neurological disorders. Further mechanistic studies aimed at discovering and developing effective therapeutics for AFB1 neurotoxicity is warranted.

20.
Bioorg Chem ; 139: 106704, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37453239

RESUMEN

An efficient [4 + 2] cyclization protocol to synthesize a series of twelve examples of 1,2,3-triazolo[4,5-b]aminoquinolines (5) as novel structurally modified tacrines was obtained by reacting readily accessible precursors (i.e., 3-alky(aryl)-5-amino-1,2,3-triazole-4-carbonitriles (3)) and selected cycloalkanones (4) of five-, six-, and seven-membered rings. We evaluated the AChE and BChE inhibitory activity of the novel modified tacrines 5, and the compound derivatives from cyclohexanone (4b) showed the best AChE and BChE inhibitory activities. Specifically, 1,2,3-triazolo[4,5-b]aminoquinolines 5bb obtained from 3-methyl-carbonitrile (3b) showed the highest AChE (IC50 = 12.01 µM), while 5ib from 3-sulfonamido-carbonitrile (3i) was the most significant inhibitor for BChE (IC50 = 1.78 µM). In general, the inhibitory potency of compound 5 was weaker than the pure tacrine reference, and our findings may help to design and develop novel anticholinesterase drugs based on modified tacrines.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Tacrina/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Inhibidores de la Colinesterasa/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA