Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 487(7406): 249-53, 2012 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-22763435

RESUMEN

During immune responses, naive CD4+ T cells differentiate into several T helper (TH) cell subsets under the control of lineage-specifying genes. These subsets (TH1, TH2 and TH17 cells and regulatory T cells) secrete distinct cytokines and are involved in protection against different types of infection. Epigenetic mechanisms are involved in the regulation of these developmental programs, and correlations have been drawn between the levels of particular epigenetic marks and the activity or silencing of specifying genes during differentiation. Nevertheless, the functional relevance of the epigenetic pathways involved in TH cell subset differentiation and commitment is still unclear. Here we explore the role of the SUV39H1­H3K9me3­HP1α silencing pathway in the control of TH2 lineage stability. This pathway involves the histone methylase SUV39H1, which participates in the trimethylation of histone H3 on lysine 9 (H3K9me3), a modification that provides binding sites for heterochromatin protein 1α (HP1α) and promotes transcriptional silencing. This pathway was initially associated with heterochromatin formation and maintenance but can also contribute to the regulation of euchromatic genes. We now propose that the SUV39H1­H3K9me3­HP1α pathway participates in maintaining the silencing of TH1 loci, ensuring TH2 lineage stability. In TH2 cells that are deficient in SUV39H1, the ratio between trimethylated and acetylated H3K9 is impaired, and the binding of HP1α at the promoters of silenced TH1 genes is reduced. Despite showing normal differentiation, both SUV39H1-deficient TH2 cells and HP1α-deficient TH2 cells, in contrast to wild-type cells, expressed TH1 genes when recultured under conditions that drive differentiation into TH1 cells. In a mouse model of TH2-driven allergic asthma, the chemical inhibition or loss of SUV39H1 skewed T-cell responses towards TH1 responses and decreased the lung pathology. These results establish a link between the SUV39H1­H3K9me3­HP1α pathway and the stability of TH2 cells, and they identify potential targets for therapeutic intervention in TH2-cell-mediated inflammatory diseases.


Asunto(s)
Epigénesis Genética , Células Th2/citología , Células Th2/inmunología , Animales , Asma/enzimología , Asma/inmunología , Asma/patología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Silenciador del Gen , Histonas/metabolismo , Masculino , Metiltransferasas/deficiencia , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Proteínas Represoras/deficiencia , Proteínas Represoras/metabolismo , Células TH1/metabolismo , Células Th2/enzimología
3.
J Cell Biol ; 193(1): 81-95, 2011 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-21464229

RESUMEN

Heterochromatin protein 1 (HP1), a major component of constitutive heterochromatin, is recruited to DNA damage sites. However, the mechanism involved in this recruitment and its functional importance during DNA repair remain major unresolved issues. Here, by characterizing HP1α dynamics at laser-induced damage sites in mammalian cells, we show that the de novo accumulation of HP1α occurs within both euchromatin and heterochromatin as a rapid and transient event after DNA damage. This recruitment is strictly dependent on p150CAF-1, the largest subunit of chromatin assembly factor 1 (CAF-1), and its ability to interact with HP1α. We find that HP1α depletion severely compromises the recruitment of the DNA damage response (DDR) proteins 53BP1 and RAD51. Moreover, HP1α depletion leads to defects in homologous recombination-mediated repair and reduces cell survival after DNA damage. Collectively, our data reveal that HP1α recruitment at early stages of the DDR involves p150CAF-1 and is critical for proper DNA damage signaling and repair.


Asunto(s)
Factor 1 de Ensamblaje de la Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Animales , Células Cultivadas , Homólogo de la Proteína Chromobox 5 , Daño del ADN , Reparación del ADN , Humanos , Ratones , Células 3T3 NIH
4.
Nat Genet ; 43(3): 220-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21317888

RESUMEN

HP1 enrichment at pericentric heterochromatin is considered important for centromere function. Although HP1 binding to H3K9me3 can explain its accumulation at pericentric heterochromatin, how it is initially targeted there remains unclear. Here, in mouse cells, we reveal the presence of long nuclear noncoding transcripts corresponding to major satellite repeats at the periphery of pericentric heterochromatin. Furthermore, we find that major transcripts in the forward orientation specifically associate with SUMO-modified HP1 proteins. We identified this modification as SUMO-1 and mapped it in the hinge domain of HP1α. Notably, the hinge domain and its SUMOylation proved critical to promote the initial targeting of HP1α to pericentric domains using de novo localization assays, whereas they are dispensable for maintenance of HP1 domains. We propose that SUMO-HP1, through a specific association with major forward transcript, is guided at the pericentric heterochromatin domain to seed further HP1 localization.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Sumoilación , Animales , Centrómero/metabolismo , Homólogo de la Proteína Chromobox 5 , Ratones , Estructura Terciaria de Proteína , ARN , Secuencias Repetitivas de Ácidos Nucleicos
5.
EMBO Rep ; 10(7): 769-75, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19498464

RESUMEN

Trimethylation of lysine 9 in histone H3 (H3K9me3) enrichment is a characteristic of pericentric heterochromatin. The hypothesis of a stepwise mechanism to establish and maintain this mark during DNA replication suggests that newly synthesized histone H3 goes through an intermediate methylation state to become a substrate for the histone methyltransferase Suppressor of variegation 39 (Suv39H1/H2). How this intermediate methylation state is achieved and how it is targeted to the correct place at the right time is not yet known. Here, we show that the histone H3K9 methyltransferase SetDB1 associates with the specific heterochromatin protein 1alpha (HP1alpha)-chromatin assembly factor 1 (CAF1) chaperone complex. This complex monomethylates K9 on non-nucleosomal histone H3. Therefore, the heterochromatic HP1alpha-CAF1-SetDB1 complex probably provides H3K9me1 for subsequent trimethylation by Suv39H1/H2 in pericentric regions. The connection of CAF1 with DNA replication, HP1alpha with heterochromatin formation and SetDB1 for H3K9me1 suggests a highly coordinated mechanism to ensure the propagation of H3K9me3 in pericentric heterochromatin during DNA replication.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteína Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Animales , Factor 1 de Ensamblaje de la Cromatina , Homólogo de la Proteína Chromobox 5 , Células HeLa , N-Metiltransferasa de Histona-Lisina , Humanos , Metilación , Ratones , Modelos Biológicos , Transporte de Proteínas , Fase S
6.
Cell ; 137(3): 485-97, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19410545

RESUMEN

The histone H3 variant CenH3, called CENP-A in humans, is central in centromeric chromatin to ensure proper chromosome segregation. In the absence of an underlying DNA sequence, it is still unclear how CENP-A deposition at centromeres is determined. Here, we purified non-nucleosomal CENP-A complexes to identify direct CENP-A partners involved in such a mechanism and identified HJURP. HJURP was not detected in H3.1- or H3.3-containing complexes, indicating its specificity for CENP-A. HJURP centromeric localization is cell cycle regulated, and its transient appearance at the centromere coincides precisely with the proposed time window for new CENP-A deposition. Furthermore, HJURP downregulation leads to a major reduction in CENP-A at centromeres and impairs deposition of newly synthesized CENP-A, causing mitotic defects. We conclude that HJURP is a key factor for CENP-A deposition and maintenance at centromeres.


Asunto(s)
Autoantígenos/metabolismo , Ciclo Celular/fisiología , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Autoantígenos/genética , Secuencia de Bases , Línea Celular , Centrómero/ultraestructura , Proteína A Centromérica , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Histonas/metabolismo , Humanos , Unión Proteica
7.
Nat Struct Mol Biol ; 15(9): 972-9, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19172751

RESUMEN

The heterochromatin protein 1 (HP1)-rich heterochromatin domains next to centromeres are crucial for chromosome segregation during mitosis. This mitotic function requires their faithful reproduction during the preceding S phase, a process whose mechanism and regulation are current puzzles. Here we show that p150, a subunit of chromatin assembly factor 1, has a key role in the replication of pericentric heterochromatin and S-phase progression in mouse cells, independently of its known function in histone deposition. By a combination of depletion and complementation assays in vivo, we link this unique function of p150 to its ability to interact with HP1. Absence of this functional interaction triggers S-phase arrest at the time of replication of pericentromeric heterochromatin, without eliciting known DNA-based checkpoint pathways. Notably, in cells lacking the histone methylases Suv39h, in which pericentric domains do not show HP1 accumulation, p150 is dispensable for S-phase progression.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Heterocromatina/metabolismo , Fase S/fisiología , Animales , Secuencia de Bases , Células Cultivadas , Factor 1 de Ensamblaje de la Cromatina , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética , Ratones , Células 3T3 NIH , Dominios y Motivos de Interacción de Proteínas , ARN Interferente Pequeño/genética
8.
Science ; 318(5858): 1928-31, 2007 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-18096807

RESUMEN

DNA replication in eukaryotes requires nucleosome disruption ahead of the replication fork and reassembly behind. An unresolved issue concerns how histone dynamics are coordinated with fork progression to maintain chromosomal stability. Here, we characterize a complex in which the human histone chaperone Asf1 and MCM2-7, the putative replicative helicase, are connected through a histone H3-H4 bridge. Depletion of Asf1 by RNA interference impedes DNA unwinding at replication sites, and similar defects arise from overproduction of new histone H3-H4 that compromises Asf1 function. These data link Asf1 chaperone function, histone supply, and replicative unwinding of DNA in chromatin. We propose that Asf1, as a histone acceptor and donor, handles parental and new histones at the replication fork via an Asf1-(H3-H4)-MCM2-7 intermediate and thus provides a means to fine-tune replication fork progression and histone supply and demand.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , ADN/metabolismo , Histonas/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , ADN de Cadena Simple/metabolismo , Células HeLa , Humanos , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Modelos Biológicos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Interferencia de ARN , Fase S
9.
Cell ; 127(3): 481-93, 2006 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-17081972

RESUMEN

Chromatin organization is compromised during the repair of DNA damage. It remains unknown how and to what extent epigenetic information is preserved in vivo. A central question is whether chromatin reorganization involves recycling of parental histones or new histone incorporation. Here, we devise an approach to follow new histone deposition upon UV irradiation in human cells. We show that new H3.1 histones get incorporated in vivo at repair sites. Remarkably we find that H3.1, which is deposited during S phase, is also incorporated outside of S phase. Histone deposition is dependent on nucleotide excision repair (NER), indicating that it occurs at a postrepair stage. The histone chaperone chromatin assembly factor 1 (CAF-1) is directly involved in the histone deposition process in vivo. We conclude that chromatin restoration after damage cannot rely simply on histone recycling. New histone incorporation at repair sites both challenges epigenetic stability and possibly contributes to damage memory.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Epigénesis Genética/genética , Células HeLa , Hemaglutininas/química , Histonas/química , Histonas/genética , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Transfección , Rayos Ultravioleta
10.
Mol Cell ; 24(2): 309-16, 2006 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-17052464

RESUMEN

Histone posttranslational modifications (PTMs) and sequence variants regulate genome function. Although accumulating evidence links particular PTM patterns with specific genomic loci, our knowledge concerning where and when these PTMs are imposed remains limited. Here, we find that lysine methylation is absent prior to histone incorporation into chromatin, except at H3K9. Nonnucleosomal H3.1 and H3.3 show distinct enrichments in H3K9me, such that H3.1 contains more K9me1 than H3.3. In addition, H3.3 presents other modifications, including K9/K14 diacetylated and K9me2. Importantly, H3K9me3 was undetectable in both nonnucleosomal variants. Notably, initial modifications on H3 variants can potentiate the action of enzymes as exemplified with Suv39HMTase to produce H3K9me3 as found in pericentric heterochromatin. Although the set of initial modifications present on H3.1 is permissive for further modifications, in H3.3 a subset cannot be K9me3. Thus, initial modifications impact final PTMs within chromatin.


Asunto(s)
Cromatina/química , Epigénesis Genética , Histonas/química , Secuencia de Aminoácidos , Animales , Núcleo Celular/metabolismo , Cromatina/metabolismo , Fibroblastos/metabolismo , Variación Genética , Células HeLa , Humanos , Lisina/química , Ratones , Datos de Secuencia Molecular , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional
11.
Methods Mol Biol ; 322: 139-47, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16739721

RESUMEN

The packaging of deoxyribonucleic acid (DNA) into chromatin within the eukaryotic nucleus can affect processes such as DNA replication, transcription, recombination, and repair. Therefore, studies aimed at understanding at the molecular level how these processes are operating have to take into account the chromatin context. We present a method to assemble DNA into chromatin by nuclear microinjection into Xenopus oocytes. This method allows in vivo chromatin formation in a nuclear environment. We provide the experimental procedures for oocyte preparation, DNA injection, and analysis of the assembled chromatin.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , ADN Circular/metabolismo , ADN de Cadena Simple/metabolismo , Microinyecciones/métodos , Oocitos/metabolismo , Xenopus , Animales , Femenino , Moldes Genéticos , Xenopus/genética
12.
Methods Enzymol ; 409: 358-74, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16793412

RESUMEN

In the eukaryotic nucleus, the DNA repair machinery operates on chromatin-embedded DNA substrates. Currently, a favored model for DNA repair into chromatin involves the transient disruption of chromatin organization to facilitate access of the repair machinery to DNA lesions. Importantly, this model implies that, in addition to DNA repair, a subsequent step is necessary to restore a proper chromatin structure. To study this latter step, we describe here methods for simultaneously analyzing chromatin assembly and DNA repair both in vitro and in vivo. Several cell-free systems have been developed that reproduce both DNA repair and nucleosome assembly. These in vitro systems are based on the use of defined damaged DNA. Two complementary assays are routinely used: (i) with circular DNA molecules, one can monitor in a combined analysis both repair synthesis and plasmid supercoiling; (ii) with immobilized damaged DNA, one follows specific protein interactions including histone deposition. In addition, in vivo assays have been designed to monitor the recruitment of chromatin assembly factors onto damaged chromatin either at a global level over the whole cell nucleus or locally at sites of DNA damage. Combination of these approaches provides powerful tools to gain insights into the mechanism by which chromatin organization can be restored after repair of DNA lesions.


Asunto(s)
Cromatina/química , Reparación del ADN , Línea Celular , Humanos , Nucleosomas/metabolismo , Plásmidos , Rayos Ultravioleta
13.
EMBO Rep ; 6(6): 520-4, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15940285

RESUMEN

Histone acetylation regulates many chromosome functions, such as gene expression and chromosome segregation. Histone deacetylase inhibitors (HDACIs) induce growth arrest, differentiation and apoptosis of cancer cells ex vivo, as well as in vivo in tumour-bearing animal models, and are now undergoing clinical trials as anti-tumour agents. However, little attention has been paid to how HDACIs function in these biological settings and why different cells respond in different ways. Here, we discuss the consequences of inhibiting histone deacetylases in cycling versus non-cycling cells, in light of the dynamics of histone acetylation patterns with a specific emphasis on heterochromatic regions of the genome.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Heterocromatina/metabolismo , Inhibidores de Histona Desacetilasas , Histonas/metabolismo , Ácidos Hidroxámicos/farmacología , Neoplasias/tratamiento farmacológico , Heterocromatina/efectos de los fármacos , Histonas/efectos de los fármacos , Ácidos Hidroxámicos/uso terapéutico
14.
EMBO J ; 23(17): 3516-26, 2004 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15306854

RESUMEN

To investigate how the complex organization of heterochromatin is reproduced at each replication cycle, we examined the fate of HP1-rich pericentric domains in mouse cells. We find that replication occurs mainly at the surface of these domains where both PCNA and chromatin assembly factor 1 (CAF-1) are located. Pulse-chase experiments combined with high-resolution analysis and 3D modeling show that within 90 min newly replicated DNA become internalized inside the domain. Remarkably, during this time period, a specific subset of HP1 molecules (alpha and gamma) coinciding with CAF-1 and replicative sites is resistant to RNase treatment. Furthermore, these replication-associated HP1 molecules are detected in Suv39 knockout cells, which otherwise lack stable HP1 staining at pericentric heterochromatin. This replicative pool of HP1 molecules disappears completely following p150CAF-1 siRNA treatment. We conclude that during replication, the interaction of HP1 with p150CAF-1 is essential to promote delivery of HP1 molecules to heterochromatic sites, where they are subsequently retained by further interactions with methylated H3-K9 and RNA.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Heterocromatina/metabolismo , Células 3T3 , Animales , Secuencia de Bases , Factor 1 de Ensamblaje de la Cromatina , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/genética , Replicación del ADN , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Células HeLa , Histonas/metabolismo , Humanos , Técnicas In Vitro , Metiltransferasas/deficiencia , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Modelos Biológicos , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Interferente Pequeño/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribonucleasas/metabolismo
15.
EMBO Rep ; 3(4): 329-34, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11897662

RESUMEN

The efficient assembly of newly replicated and repaired DNA into chromatin is essential for proper genome function. Based on genetic studies in Saccharomyces cerevisiae, the histone chaperone anti-silencing function 1 (Asf1) has been implicated in the DNA repair response. Here, the human homologs are shown to function synergistically with human CAF-1 to assemble nucleosomes during nucleotide excision repair in vitro. Furthermore, we demonstrate that hAsf1 proteins can interact directly with the p60 subunit of hCAF-1. In contrast to hCAF-1 p60, the nuclear hAsf1 proteins are not significantly associated with chromatin in cells before or after the induction of DNA damage, nor specifically recruited to damaged DNA during repair in a bead-linked DNA assay. A model is proposed in which the synergism between hAsf1 and CAF-1 for nucleosome formation during DNA repair is achieved through a transient physical interaction allowing histone delivery from Asf1 to CAF-1.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona , Reparación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Nucleosomas/metabolismo , Factor 1 de Ensamblaje de la Cromatina , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Nucleoplasminas , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
16.
Nat Genet ; 30(3): 329-34, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11850619

RESUMEN

Post-translational modification of histone tails is thought to modulate higher-order chromatin structure. Combinations of modifications including acetylation, phosphorylation and methylation have been proposed to provide marks recognized by specific proteins. This is exemplified, in both mammalian cells and fission yeast, by transcriptionally silent constitutive pericentric heterochromatin. Such heterochromatin contains histones that are generally hypoacetylated and methylated by Suv39h methyltransferases at lysine 9 of histone H3 (H3-K9). Each of these modification states has been implicated in the maintenance of HP1 protein-binding at pericentric heterochromatin, in transcriptional silencing and in centromere function. In particular, H3-K9 methylation is thought to provide a marking system for the establishment and maintenance of stably repressed regions and heterochromatin subdomains. To address the question of how these two types of modifications, as well as other unidentified parameters, function to maintain pericentric heterochromatin, we used a combination of histone deacetylase inhibitors, RNAse treatments and an antibody raised against methylated branched H3-K9 peptides. Our results show that both H3-K9 acetylation and methylation can occur on independent sets of H3 molecules in pericentric heterochromatin. In addition, we identify an RNA- and histone modification-dependent structure that brings methylated H3-K9 tails together in a specific configuration required for the accumulation of HP1 proteins in these domains.


Asunto(s)
Heterocromatina/metabolismo , Histonas/metabolismo , ARN/metabolismo , Técnica del Anticuerpo Fluorescente , Heterocromatina/química , Conformación Proteica , ARN/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA