Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Viruses ; 15(12)2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38140640

RESUMEN

In recent years, the emergence of the concept of immunometabolism has shed light on the pivotal role that cellular metabolism plays in both the activation of immune cells and the development of immune programs. The antiviral response, a widely distributed defense mechanism used by infected cells, serves to not only control infections but also to attenuate their deleterious effects. The exploration of the role of metabolism in orchestrating the antiviral response represents a burgeoning area of research, especially considering the escalating incidence of viral outbreaks coupled with the increasing prevalence of metabolic diseases. Here, we present a review of current knowledge regarding immunometabolism and the antiviral response during viral infections. Initially, we delve into the concept of immunometabolism by examining its application in the field of cancer-a domain that has long spearheaded inquiries into this fascinating intersection of disciplines. Subsequently, we explore examples of immune cells whose activation is intricately regulated by metabolic processes. Progressing with a systematic and cellular approach, our aim is to unravel the potential role of metabolism in antiviral defense, placing significant emphasis on the innate and canonical interferon response.


Asunto(s)
Enfermedades Metabólicas , Virosis , Humanos , Interferones , Antivirales
2.
Viruses ; 15(2)2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36851578

RESUMEN

Extracellular vesicles (EVs), produced during viral infections, are of emerging interest in understanding infectious processes and host-pathogen interactions. EVs and exosomes in particular have the natural ability to transport nucleic acids, proteins, and other components of cellular or viral origin. Thus, they participate in intercellular communication, immune responses, and infectious and pathophysiological processes. Some viruses are known to hijack the cell production and content of EVs for their benefit. Here, we investigate whether two pathogenic flaviviruses i.e., Zika Virus (ZIKV) and Dengue virus (DENV2) could have an impact on the features of EVs. The analysis of EVs produced by infected cells allowed us to identify that the non-structural protein 1 (NS1), described as a viral toxin, is associated with exosomes. This observation could be confirmed under conditions of overexpression of recombinant NS1 from each flavivirus. Using different isolation methods (i.e., exosome isolation kit, size exclusion chromatography, Polyethylene Glycol enrichment, and ELISA capture), we showed that NS1 was present as a dimer at the surface of excreted exosomes, and that this association could occur in the extracellular compartment. This finding could be of major importance in a physiological context. Indeed, this capacity of NS1 to address EVs and its implication in the pathophysiology during Dengue or Zika diseases should be explored. Furthermore, exosomes that have demonstrated a natural capacity to vectorize NS1 could serve as useful tools for vaccine development.


Asunto(s)
Virus del Dengue , Exosomas , Vesículas Extracelulares , Infección por el Virus Zika , Virus Zika , Humanos , Proteínas no Estructurales Virales/metabolismo
3.
Curr Issues Mol Biol ; 45(2): 1644-1654, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36826051

RESUMEN

Dengue is the most prevalent mosquito-borne viral disease. It is caused by the infection of any of the four dengue virus (DENV) serotypes DENV-1 to DENV-4. The DENV non-structural glycoprotein 1 (NS1) plays an important role in virus replication and the immunopathogenesis of virus infection. The NS1 protein has been identified as both a cell-associated homodimer and a soluble secreted lipoprotein nanoparticle. The nature of the residues at positions NS1-272 and NS1-324 in the ß-ladder domain may have an effect on the biological behaviors of DENV-2 NS1 protein in human hepatoma Huh7 cells. The stability of the NS1 protein from the Reunion 2018 DENV-2 strain was affected by the presence of lysine residues at positions 272 and 324. In the present study, we evaluated the impact of mutations into lysine at positions 272 and 324 on recombinant NS1 protein from the DES-14 DENV-2 strain bearing arginine residue on these two positions. The DES-14 NS1 protein mutant bearing a lysine at position 324 was deficient in protein stability and secretion compared to wild-type protein. The defect in the DES-14 NS1 protein mutant was associated to oxidative stress and pro-inflammatory cytokine activation in Huh7 cells. The ubiquitin-proteasome proteolytic pathway might play a key role in the stability of DENV-2 protein bearing a lysine residue at position 324.

4.
Pathogens ; 11(10)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36297225

RESUMEN

When exposed to a viral infection, the attacked cells promptly set up defense mechanisms. As part of the antiviral responses, the innate immune interferon pathway and associated interferon-stimulated genes notably allow the production of proteins bearing antiviral activity. Numerous viruses are able to evade the interferon response, highlighting the importance of controlling this pathway to ensure their efficient replication. Several viruses are also known to manipulate the metabolism of infected cells to optimize the availability of amino acids, nucleotides, and lipids. They then benefit from a reprogramming of the metabolism that favors glycolysis instead of mitochondrial respiration. Given the increasingly discussed crosstalk between metabolism and innate immunity, we wondered whether this switch from glycolysis to mitochondrial respiration would be beneficial or deleterious for an efficient antiviral response. We used a cell-based model of metabolic reprogramming. Interestingly, we showed that increased mitochondrial respiration was associated with an enhanced interferon response following polyriboinosinic:polyribocytidylic acid (poly:IC) stimulation. This suggests that during viral infection, the metabolic reprogramming towards glycolysis is also part of the virus' strategies to inhibit the antiviral response.

5.
Vaccines (Basel) ; 9(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34579183

RESUMEN

The mosquito-borne viral disease dengue is a global public health problem causing a wide spectrum of clinical manifestations ranging from mild dengue fever to severe dengue with plasma leakage and bleeding which are often fatal. To date, there are no specific medications to treat dengue and prevent the risk of hemorrhage. Dengue is caused by one of four genetically related but antigenically distinct serotypes DENV-1-DENV-4. The growing burden of the four DENV serotypes has intensified both basic and applied research to better understand dengue physiopathology. Research has shown that the secreted soluble hexameric form of DENV nonstructural protein-1 (sNS1) plays a significant role in the pathogenesis of severe dengue. Here, we provide an overview of the current knowledge about the role of sNS1 in the immunopathogenesis of dengue disease. We discuss the potential use of sNS1 in future vaccine development and its potential to improve dengue vaccine efficiency, particularly against severe dengue illness.

6.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669407

RESUMEN

La Reunion island in the South West Indian Ocean is now endemic for dengue following the introduction of dengue virus serotype 2 (DENV-2) cosmopolitan-I genotype in 2017. DENV-2 infection causes a wide spectrum of clinical manifestations ranging from flu-like disease to severe dengue. The nonstructural glycoprotein 1 (NS1) has been identified as playing a key role in dengue disease severity. The intracellular NS1 exists as a homodimer, whereas a fraction is driven towards the plasma membrane or released as a soluble hexameric protein. Here, we characterized the NS1 glycoproteins from clinical isolates DES-14 and RUN-18 that were collected during the DENV-2 epidemics in Tanzania in 2014 and La Reunion island in 2018, respectively. In relation to hepatotropism of the DENV, expression of recombinant DES-14 NS1 and RUN-18 NS1 glycoproteins was compared in human hepatoma Huh7 cells. We observed that RUN-18 NS1 was poorly stable in Huh7 cells compared to DES-14 NS1. The instability of RUN-18 NS1 leading to a low level of NS1 secretion mostly relates to lysine residues on positions 272 and 324. Our data raise the issue of the consequences of a defect in NS1 stability in human hepatocytes in relation to the major role of NS1 in the pathogenesis of the DENV-2 infection.


Asunto(s)
Virus del Dengue/metabolismo , Dengue/epidemiología , Dengue/metabolismo , Epidemias , Genotipo , Lisina/química , Proteínas no Estructurales Virales/química , Sustitución de Aminoácidos , Antígenos Virales/química , Antígenos Virales/genética , Línea Celular Tumoral , Dengue/virología , Células HEK293 , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Multimerización de Proteína , Estabilidad Proteica , Proteínas Recombinantes/química , Reunión/epidemiología , Serogrupo , Tanzanía/epidemiología , Transfección , Proteínas no Estructurales Virales/genética
7.
Sci Rep ; 10(1): 7239, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350316

RESUMEN

Leptospirosis is caused by pathogenic Leptospira transmitted through contact with contaminated environments. Most mammalian species are infectable by Leptospira but only few act as efficient reservoir being capable of establishing long term kidney colonization and shedding Leptospira in urine. In Madagascar, a large diversity of pathogenic Leptospira display a tight specificity towards their endemic volant or terrestrial mammalian hosts. The basis of this specificity is unknown: it may indicate some genetically determined compatibility between host cells and bacteria or only reflect ecological constraints preventing contacts between specific hosts. In this study, Rattus norvegicus was experimentally infected with either Leptospira interrogans, Leptospira borgpetersenii or Leptospira mayottensis isolated from rats, bats or tenrecs, respectively. Leptospira borgpetersenii and L. mayottensis do not support renal colonization as featured by no shedding of live bacteria in urine and low level and sporadic detection of Leptospira DNA in kidneys. In contrast 2 out of the 7 R. norvegicus challenged with L. interrogans developed renal colonization and intense Leptospira shedding in urine throughout the 3 months of experimental infection. These data suggest that host-Leptospira specificity in this biodiversity hotspot is driven at least in part by genetic determinants likely resulting from long-term co-diversification processes.


Asunto(s)
Biodiversidad , Leptospira , Leptospirosis , Animales , ADN Bacteriano/metabolismo , Femenino , Riñón/metabolismo , Riñón/microbiología , Riñón/patología , Leptospira/aislamiento & purificación , Leptospira/metabolismo , Leptospira/patogenicidad , Leptospirosis/metabolismo , Leptospirosis/microbiología , Leptospirosis/patología , Ratas , Ratas Wistar , Especificidad de la Especie
8.
Microbiol Resour Announc ; 9(4)2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974157

RESUMEN

Dengue virus has recently reemerged in the southern Indian Ocean islands, causing outbreaks in Reunion Island and the Seychelles. In the present study, we determined the complete genome sequences of closely related clinical isolates of dengue virus type 2 circulating in the Seychelles in 2016 and Reunion Island in 2018.

9.
Vaccines (Basel) ; 7(2)2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31238493

RESUMEN

Zika virus (ZIKV) is an emerging mosquito-borne flavivirus which is of major public health concern. ZIKV infection is recognized as the cause of congenital Zika disease and other neurological defects, with no specific prophylactic or therapeutic treatments. As the humoral immune response is an essential component of protective immunity, there is an urgent need for effective vaccines that confer protection against ZIKV infection. In the present study, we evaluate the immunogenicity of chimeric viral clone ZIKBeHMR-2, in which the region encoding the structural proteins of the African strain MR766 backbone was replaced with its counterpart from the epidemic strain BeH819015. Three amino-acid substitutions I152T, T156I, and H158Y were introduced in the glycan loop of the E protein (E-GL) making ZIKBeHMR-2 a non-glycosylated virus. Adult BALB/c mice inoculated intraperitoneally with ZIKBeHMR-2 developed anti-ZIKV antibodies directed against viral proteins E and NS1 and a booster dose increased antibody titers. Immunization with ZIKBeHMR-2 resulted in a rapid production of neutralizing anti-ZIKV antibodies. Antibody-mediated ZIKV neutralization was effective against viral strain MR766, whereas epidemic ZIKV strains were poorly sensitive to neutralization by anti-ZIKBeHMR-2 immune sera. From our data, we propose that the three E-GL residues at positions E-152, E-156, and E-158 greatly influence the accessibility of neutralizing antibody epitopes on ZIKV.

10.
Heliyon ; 5(4): e01455, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31008393

RESUMEN

Reunion Island is currently experiencing an epidemic caused by Dengue virus type-2 (DENV-2) resulting in over 6,763 cases from austral summer 2017 to winter 2018. Phylogenetic analyses on two non-imported cases of dengue infection from Reunion Island highlight a regional circulation of DENV-2 Cosmopolitan lineage 1 virus on both Reunion Island and the Seychelles.

11.
Front Microbiol ; 10: 382, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30915044

RESUMEN

Leptospirosis is one of the most widespread zoonoses worldwide, with highest incidence reported on tropical islands. Recent investigations carried out in a One-Health framework have revealed a wide diversity of pathogenic Leptospira lineages on the different islands of Western Indian Ocean carried out by a large diversity of mammal reservoirs, including domestic and wild fauna. Using golden Syrian hamsters as a model of acute infection, we studied the virulence of Leptospira interrogans, L. mayottensis, and L. borgpetersenii isolates obtained from rats, tenrecs, and bats, respectively. Hamsters were inoculated with 2.108 bacterial cells and monitored for 1 month. The L. interrogans isolate proved to be the most pathogenic while L. mayottensis and L. borgpetersenii isolates induced no clinical symptoms in the infected hamsters. High leptospiral DNA amounts were also detected in the urine and organs of hamsters infected with the L. interrogans isolate while L. mayottensis and L. borgpetersenii isolates mostly failed to disseminate into the organism. In addition, histological damage was more pronounced in the kidneys and lungs of hamsters infected with the L. interrogans isolate. Altogether, these data support that Leptospira strains shed by mammals endemic to this insular ecosystem (L. mayottensis and L. borgpetersenii isolates) are less pathogenic than the L. interrogans rat-borne isolate. These results may provide a relevant framework for understanding the contrasting epidemiology of human leptospirosis observed among Western Indian Ocean islands.

13.
Int J Mol Sci ; 19(4)2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29621184

RESUMEN

The medical importance of Zika virus (ZIKV) was fully highlighted during the recent epidemics in South Pacific islands and Americas due to ZIKV association with severe damage to fetal brain development and neurological complications in adult patients. A worldwide research effort has been undertaken to identify effective compounds to prevent or treat ZIKV infection. Fruits and vegetables may be sources of compounds with medicinal properties. Flavonoids are one class of plant compounds that emerge as promising antiviral molecules against ZIKV. In the present study, we demonstrated that flavonoid isoquercitrin exerts antiviral activity against African historical and Asian epidemic strains of ZIKV in human hepatoma, epithelial, and neuroblastoma cell lines. Time-of-drug addition assays showed that isoquercitrin acts on ZIKV entry by preventing the internalisation of virus particles into the host cell. Our data also suggest that the glycosylated moiety of isoquercitrin might play a role in the antiviral effect of the flavonoid against ZIKV. Our results highlight the importance of isoquercitrin as a promising natural antiviral compound to prevent ZIKV infection.


Asunto(s)
Antivirales/uso terapéutico , Flavonoides/uso terapéutico , Quercetina/análogos & derivados , Infección por el Virus Zika/prevención & control , Butiratos , Humanos , Quercetina/uso terapéutico , Sulfonas
14.
Virology ; 516: 265-273, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29395111

RESUMEN

Mosquito-borne Zika virus (ZIKV) recently emerged in South Pacific islands and Americas where large epidemics were documented. In the present study, we investigated the contribution of the structural proteins C, prM and E in the permissiveness of human host cells to epidemic strains of ZIKV. To this end, we evaluated the capacity of the epidemic strain BeH819015 to infect epithelial A549 and neuronal SH-SY5Y cells in comparison to the African historical MR766 strain. For that purpose, we generated a molecular clone of BeH819015 and a chimeric clone of MR766 which contains the BeH819015 structural protein region. We showed that ZIKV containing BeH819015 structural proteins was much less efficient in cell-attachment leading to a reduced susceptibility of A549 and SH-SY5Y cells to viral infection. Our data illustrate a previously underrated role for C, prM, and E in ZIKV epidemic strain ability to initiate viral infection in human host cells.


Asunto(s)
Proteínas Estructurales Virales/metabolismo , Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Línea Celular , Células Epiteliales/virología , Especificidad del Huésped , Humanos , Neuronas/virología , Proteínas Estructurales Virales/genética , Internalización del Virus , Replicación Viral , Virus Zika/genética
15.
Biochimie ; 142: 179-182, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28942054

RESUMEN

Available rapid, simple and accurate methods for detection and diagnosis of emerging viral diseases are required. Recently, there was an urgent need for specific antibodies against mosquito-borne Zika virus (ZIKV), which is an emerging zoonotic disease of medical concern in different regions of the world. Here, we showed that overexpression of ZIKV antigens in ClearColi BL21(DE3), a bacteria strain expressing a non-endotoxic form of LPS, is suitable for the production of specific ZIKV antisera. Two major ZIKV antigenic domains, the domain III from envelope E glycoprotein, which brings the virus-specific epitopes, and the N-terminal region of nonstructural NS1 glycoprotein, which is responsible for pathophysiological conditions, were overexpressed in ClearColi BL21(DE3). Immunization of adult rat with insoluble recombinant ZIKV antigens in inclusion bodies resulted in the production of specific antibodies in a few weeks. Anti-E and anti-NS1 antibodies are efficient as biological tools for ZIKV detection by indirect ELISA and immunoblot assay. This method could successfully be applied to any emerging viruses.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Antígenos Virales/genética , Virus Zika/inmunología , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Escherichia coli/genética , Expresión Génica , Cuerpos de Inclusión/genética
16.
Int J Mol Sci ; 19(1)2017 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-29295477

RESUMEN

Zika virus (ZIKV) is a mosquito-borne flavivirus that recently emerged in the South Pacific, Americas, and Caribbean islands, where the larger epidemics were documented. ZIKV infection in humans is responsible for neurological disorders and microcephaly. Flavivirus NS1 is a non-structural glycoprotein that is expressed on the cell surface and secreted as a hexameric lipoprotein particle. Intracellular NS1 exists as a dimer that is required for viral replication, whereas the secreted NS1 hexamer interacts with host factors, leading to pathophysiological conditions. In an effort to dispose of specific anti-ZIKV NS1 immune serum, Vero cells were transduced with a lentiviral vector containing the NS1 gene from an epidemic strain of ZIKV. We showed that stably transduced Vero/ZIKV NS1 cell clone was efficient in the secretion of recombinant NS1 oligomer. Immunization of adult rat with purified extracellular NS1 developed anti-ZIKV antibodies that specifically react with the NS1 dimer produced in human cells infected with African and Asian strains of ZIKV. The rat antibody against ZIKV NS1 dimer is a reliable biological tool that enables the immunological detection of secreted NS1 from host-cells infected with ZIKV.


Asunto(s)
Sueros Inmunes/inmunología , Multimerización de Proteína/inmunología , Proteínas Recombinantes/metabolismo , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo , Células A549 , Animales , Chlorocebus aethiops , Clonación Molecular , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Inmunización , Lentivirus/genética , Ratas , Células Vero
17.
Virology ; 493: 217-26, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27060565

RESUMEN

Zika virus (ZIKV) is an emerging flavivirus since the first epidemics in South Pacific in 2007. The recent finding that ZIKV is now circulating in Western Hemisphere and can be associated to severe human diseases, warrants the need for its study. Here we evaluate the susceptibility of human lung epithelial A549 cells to South Pacific epidemic strain of ZIKV isolated in 2013. We showed that ZIKV growth in A549 cells is greatly efficient. ZIKV infection resulted in the secretion of IFN-ß followed by the expression of pro-inflammatory cytokines such as IL-1ß, and transcriptional activity of IFIT genes. At the maximum of virus progeny production, ZIKV triggers mitochondrial apoptosis through activation of caspases-3 and -9. Whereas at early infection times, the rapid release of IFN-ß which exerts an antiviral effect against ZIKV might delay apoptosis in infected cells.


Asunto(s)
Células Epiteliales Alveolares/virología , Apoptosis , Interferón beta/biosíntesis , Replicación Viral , Virus Zika/fisiología , Células A549 , Células Epiteliales Alveolares/metabolismo , Animales , Autofagia , Chlorocebus aethiops , Citocinas/biosíntesis , Humanos , Interferón beta/genética , Interferón beta/metabolismo , Mitocondrias , Células Vero
18.
Biochem Biophys Rep ; 8: 151-156, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28955951

RESUMEN

Arthritogenic alphaviruses are emerging arthropod-borne viruses that occasionally cause sporadic to global outbreaks all over the world. Many environmental factors including xenobiotics have been identified as capable of influencing the spread, the susceptibility and the outcome of viral infection. Among them cadmium is a toxic non-essential heavy metal and a prevalent environmental contaminant. In the present study we evaluated the effect of cadmium exposure on alphavirus infection in vitro. We infected Human Embryonic Kidney (HEK) 293 cells in the presence of cadmium chloride (CdCl2) with Sindbis virus. Cell viability, apoptosis and viral growth were then examined. Our data show that effective doses of cadmium decreased the virus mediated-cell death by inhibition of apoptosis. Moreover, virus growth in HEK 293 cells was also reduced by CdCl2 treatment. Altogether our results demonstrate that cadmium triggers a protective response which renders HEK 293 cells resistant against Sindbis virus infection.

19.
Radiat Res ; 184(5): 470-481, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26484399

RESUMEN

We examined nutrient transport in the intestines of mice exposed to chronic low-LET 137Cs gamma rays. The mice were whole-body irradiated for 3 days at dose rates of 0, 0.13 and 0.20 Gy/h, for total dose delivery of 0, 9.6 or 14.4 Gy, respectively. The mice were fed either a control diet or a diet supplemented with high levels of vitamins A, C and E. Our results showed that nutrient transport was perturbed by the chronic irradiation conditions. However, no apparent alteration of the macroscopic intestinal structures of the small intestine were observed up to day 10 after initiating irradiation. Jejunal fructose uptake measured in vitro was strongly affected by the chronic irradiation, whereas uptake of proline, carnosine and the bile acid taurocholate in the ileum was less affected. D-glucose transport did not appear to be inhibited significantly by either 9.6 or 14.4 Gy exposure. In the 14.4 Gy irradiated groups, the diet supplemented with high levels of vitamins A, C and E increased intestinal transport of fructose compared to the control diet (day 10; t test, P = 0.032), which correlated with elevated levels of vitamins A, C and E in the plasma and jejunal enterocytes. Our earlier studies with mice exposed acutely to 137Cs gamma rays demonstrated significant protection for transport of fructose, glucose, proline and carnosine. Taken together, these results suggest that high levels of vitamins A, C and E dietary supplements help preserve intestinal nutrient transport when intestines are irradiated chronically or acutely with low-LET gamma rays.


Asunto(s)
Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Suplementos Dietéticos , Rayos gamma/efectos adversos , Absorción Intestinal/efectos de la radiación , Intestino Delgado/metabolismo , Vitaminas/metabolismo , Vitaminas/farmacología , Animales , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Transporte Biológico/efectos de los fármacos , Transporte Biológico/efectos de la radiación , Peso Corporal/efectos de los fármacos , Peso Corporal/efectos de la radiación , Metabolismo de los Hidratos de Carbono/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de la radiación , Intestino Delgado/efectos de los fármacos , Intestino Delgado/efectos de la radiación , Transferencia Lineal de Energía , Masculino , Ratones , Tamaño de los Órganos/efectos de los fármacos , Tamaño de los Órganos/efectos de la radiación , Protectores contra Radiación/metabolismo , Protectores contra Radiación/farmacología , Factores de Tiempo , Vitamina A/metabolismo , Vitamina A/farmacología , Vitamina E/metabolismo , Vitamina E/farmacología
20.
Free Radic Biol Med ; 50(1): 55-65, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20970494

RESUMEN

Rapidly proliferating epithelial crypt cells of the small intestine are susceptible to radiation-induced oxidative stress, yet there is a dearth of data linking this stress to expression of antioxidant enzymes and to alterations in intestinal nutrient absorption. We previously showed that 5-14 days after acute γ-irradiation, intestinal sugar absorption decreased without change in antioxidant enzyme expression. In the present study, we measured antioxidant mRNA and protein expression in mouse intestines taken at early times postirradiation. Observed changes in antioxidant expression are characterized by a rapid decrease within 1h postirradiation, followed by dramatic upregulation within 4h and then downregulation a few days later. The cell type and location expressing the greatest changes in levels of the oxidative stress marker 4HNE and of antioxidant enzymes are, respectively, epithelial cells responsible for nutrient absorption and the crypt region comprising mainly undifferentiated cells. Consumption of a cocktail of antioxidant vitamins A, C, and E, before irradiation, prevents reductions in transport of intestinal sugars, amino acids, bile acids, and peptides. Ingestion of antioxidants may blunt radiation-induced decreases in nutrient transport, perhaps by reducing acute oxidative stress in crypt cells, thereby allowing the small intestine to retain its absorptive function when those cells migrate to the villus days after the insult.


Asunto(s)
Antioxidantes/metabolismo , Citoprotección/efectos de los fármacos , Absorción Intestinal/efectos de la radiación , Intestino Delgado/metabolismo , Traumatismos por Radiación/metabolismo , Animales , Antioxidantes/farmacología , Antioxidantes/fisiología , Ácido Ascórbico/farmacología , Transporte Biológico/efectos de los fármacos , Transporte Biológico/efectos de la radiación , Regulación hacia Abajo/efectos de la radiación , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Ingestión de Alimentos/efectos de la radiación , Alimentos , Absorción Intestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Intestino Delgado/patología , Intestino Delgado/efectos de la radiación , Masculino , Ratones , Modelos Biológicos , Traumatismos por Radiación/patología , Traumatismos por Radiación/prevención & control , Vitamina A/farmacología , Vitamina E/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA