Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Polymers (Basel) ; 16(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000666

RESUMEN

Oral film (OF) research has intensified due to the effortless administration and advantages related to absorption in systemic circulation. Chitosan is one of the polymers widely used in the production of OFs; however, studies evaluating the maintenance of the active principles' activity are incipient. Propolis has been widely used as an active compound due to its different actions. Printing techniques to incorporate propolis in OFs prove to be efficient. The objective of the present study is to develop and characterize oral films based on chitosan and propolis using printing techniques and to evaluate the main activities of the extract incorporated into the polymeric matrix. The OFs were characterized in relation to the structure using scanning and atomic force electron microscopy; the mechanical properties, disintegration time, wettability, and stability of antioxidant activity were evaluated. The ethanolic extract of green propolis (GPEE) concentration influenced the properties of the OFs. The stability (phenolic compounds and antioxidant activity) was reduced in the first 20 days, and after this period, it remained constant.

2.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36233212

RESUMEN

Despite advances in diagnostic and therapeutic approaches for lung cancer, new therapies targeting metastasis by the specific regulation of cancer genes are needed. In this study, we screened a small library of epigenetic inhibitors in non-small-cell lung cancer (NSCLC) cell lines and evaluated 38 epigenetic targets for their potential role in metastatic NSCLC. The potential candidates were ranked by a streamlined approach using in silico and in vitro experiments based on publicly available databases and evaluated by real-time qPCR target gene expression, cell viability and invasion assays, and transcriptomic analysis. The survival rate of patients with lung adenocarcinoma is inversely correlated with the gene expression of eight epigenetic targets, and a systematic review of the literature confirmed that four of them have already been identified as targets for the treatment of NSCLC. Using nontoxic doses of the remaining inhibitors, KDM6B and PADI4 were identified as potential targets affecting the invasion and migration of metastatic lung cancer cell lines. Transcriptomic analysis of KDM6B and PADI4 treated cells showed altered expression of important genes related to the metastatic process. In conclusion, we showed that KDM6B and PADI4 are promising targets for inhibiting the metastasis of lung adenocarcinoma cancer cells.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Histona Demetilasas con Dominio de Jumonji , Neoplasias Pulmonares , Arginina Deiminasa Proteína-Tipo 4 , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Detección Precoz del Cáncer , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Arginina Deiminasa Proteína-Tipo 4/genética
3.
J Vet Res ; 66(2): 281-288, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35892112

RESUMEN

Introduction: Dogs with chronic kidney disease (CKD) may have alterations in the glomerular filtration barrier, including podocyte loss. Detection of podocyte mRNA in urine could be useful for assessing podocyturia in dogs with kidney disease. The objective of this study was to evaluate the presence of nephrin mRNA (NPHS1) and podocin mRNA (NPHS2) in urine sediments of dogs with naturally occurring CKD and healthy dogs. Material and Methods: Twenty-four dogs, 14 with CKD and 10 as healthy controls, underwent clinical evaluation. The dogs with CKD were divided into two groups, according to the International Renal Interest Society criteria: stage 1 or 2 CKD (n = 5) and stage 3 or 4 CKD (n = 9). Urine was collected by catheterisation or free catch and RNA isolation from the urine sediments was optimised using glycogen as a co-precipitant. Detection of NPHS1 and NPHS2 in the sediment samples was performed using quantitative real-time PCR. Results: Both types of mRNA were detected in samples from all groups, but the percentages of detection were higher in the group of dogs with stage 1 or 2 CKD and lower in the group of dogs with stage 3 or 4 disease. Conclusion: Physiological podocyturia was observed in healthy dogs, and the results suggest differential podocyturia in dogs with CKD, according to the stage of the disease, i.e. an increase in podocyturia in dogs at stage 1 or 2 and a reduction in podocyturia in dogs at stage 3 or 4.

4.
Vet Comp Oncol ; 19(3): 593-601, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33871162

RESUMEN

Canine mammary carcinoma (CMC) is one of the major health threats in dogs. The oncolytic virotherapy is a promising strategy to treat canine as well as human cancer patients with non-pathogenic replicating viruses. Here, we evaluated the antitumor activity of one lentogenic, non-lytic Newcastle disease virus (NDV) LaSota strain expressing GFP (NDV-GFP) on five different CMCs and one non-tumorigenic cell line, regarding cell viability, cell death, selectivity index, morphology, global and target gene expression analysis. As evidenced by the selectivity index, all CMC cell lines were more susceptible to NDV-GFP in comparison with the non-tumorigenic cells (~3.1× to ~78.7×). In addition, the oncolytic effect of NDV-GFP was more evident in more malignant CMC cells. Also, we observed an inverse association of the IFN pathway expression and the susceptibility to NDV. The downregulated genes in NDV-GFP-sensitive cells were functionally enriched for antiviral mechanisms by interferon and immune system pathways, demonstrating that these mechanisms are the most prominent for oncolysis by NDV. To our knowledge, this is the first description of oncolysis by an NDV strain in canine mammary cancer cells. We also demonstrated specific molecular pathways related to NDV susceptibility in these cancer cells, opening the possibility to use NDV as a therapeutic-targeted option for more malignant CMCs. Therefore, these results urge for more studies using oncolytic NDVs, especially considering genetic editing to improve efficacy in dogs.


Asunto(s)
Enfermedades de los Perros , Neoplasias Mamarias Animales/terapia , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Antivirales , Enfermedades de los Perros/terapia , Perros , Femenino , Interferones , Virus de la Enfermedad de Newcastle , Viroterapia Oncolítica/veterinaria , Replicación Viral
5.
FEMS Microbiol Lett ; 365(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29390131

RESUMEN

The genomes of 262 Bacillus cereus isolates were analyzed including 69 isolates sampled from equipment, raw milk and dairy products from Brazil. The population structure of isolates showed strains belonging to known phylogenetic groups II, III, IV, V and VI. Almost all the isolates obtained from dairy products belonged to group III. Investigation of specific alleles revealed high numbers of isolates carrying toxin-associated genes including cytK (53.62%), hblA (59.42%), hblC (44.93%), hblD (53.62%), nheA (84.06%), nheB (89.86%) and nheC (84.06%) with isolates belonging to groups IV and V having significant higher prevalence of hblACD and group IV of CytK genes. Strains from dairy products had significantly lower prevalence of CytK and hblACD genes compared to isolates from equipment and raw milk/bulk tanks. Genes related to sucrose metabolism were detected at higher frequency in isolates obtained from raw milk compared to strains from equipment and utensils. The population genomic analysis demonstrated the diversity of strains and variability of putative function among B. cereus group isolates in Brazilian dairy production, with large numbers of strains potentially able to cause foodborne illness. This detailed information will contribute to targeted interventions to reduce milk contamination and spoilage associated with B. cereus in Brazil.


Asunto(s)
Bacillus cereus/genética , Microbiología de Alimentos , Genoma Bacteriano/genética , Genómica , Animales , Bacillus cereus/clasificación , Bacillus cereus/aislamiento & purificación , Brasil/epidemiología , ADN Bacteriano/genética , Productos Lácteos/microbiología , Enterotoxinas/genética , Microbiología Ambiental , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/microbiología , Variación Genética , Genotipo , Filogenia , Análisis de Secuencia de ADN
6.
Biochem Pharmacol ; 127: 28-33, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28017773

RESUMEN

Verbascoside is the main component of the traditional medicinal plants that were used against protozoa parasites that cause malaria and leishmaniasis. Previously, we have described verbascoside inhibition of Leishmania amazonensis arginase as well as its antileishmanial action against extracellular promastigotes. In this study, we have assessed arginase parasite inhibition in intracellular amastigotes. In addition, we verified whether verbascoside can influence the host defense against the parasite by measuring gene expression of cytokines IL-1b, IL-10, IL-18, TNF-α and murine macrophage arginase as well as nitric oxide synthase enzymes. Our results show that verbascoside acts on intracellular amastigotes of L. amazonensis (EC50=32µM) by selectively inhibiting the parasite arginase. Verbascoside did not affect the expression of cytokines or enzymes by murine macrophages. However, verbascoside was active against L. (L.) amazonensis amastigotes that were resistant to treatment with LPS and IFN-γ. Verbascoside action on L. amazonensis can be associated with reduction of the protective oxidative mechanism of the parasite leading to impaired trypanothione synthesis that is induced by the parasite arginase inhibition.


Asunto(s)
Antiprotozoarios/farmacología , Arginasa/antagonistas & inhibidores , Glucósidos/farmacología , Interferón gamma/farmacología , Leishmania/efectos de los fármacos , Lipopolisacáridos/farmacología , Fenoles/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Línea Celular , Citocinas/metabolismo , Resistencia a Medicamentos , Leishmania/enzimología , Activación de Macrófagos , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo
7.
Braz. j. pharm. sci ; 51(2): 295-303, Apr.-June 2015. ilus
Artículo en Inglés | LILACS | ID: lil-755066

RESUMEN

Caffeine is one of the world's most consumed substances. It is present in coffee, green tea and guarana, among others. The xenobiotic-sensing nuclear receptor subfamily 1, group I, member 3 (Nr1i3), also known as the Constitutive Androstane Receptor (Car) is a key regulator of drug metabolism and excretion. No consistent description of caffeine effects on this receptor has been described. Thus, to unravel the effects of caffeine on this receptor, we performed experiments in mice. First, C57Bl/6 mice that were treated daily with caffeine (50 mg/kg) for 15 days presented a slight but significant increase in Nr1i3 and Cyp2b10 gene expression. A second experiment was then performed to verify the effects of caffeine on TCPOBOP (1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene, 3,3′,5,5′-tetrachloro-1,4-bis(pyridyloxy)benzene), the most potent agonist known for mice Nr1i3. Interestingly, caffeine potentiated TCPOBOP pleiotropic effects in mice liver, such as hepatomegaly, hepatotoxicity, hepatocyte proliferation and loss of cell-to-cell communication through gap junctions. In addition, caffeine plus TCPOBOP treatment increased liver gene expression of Nr1i3 and Cyp2b10 comparing with only caffeine or TCPOBOP treatments. Together, these results indicate that caffeine increases the expression of Nr1i3 in mice liver, although at this point it is not possible to determine if Nr1i3 directly or indirectly mediates this effect...


A cafeína é uma das substâncias mais consumidas mundialmente, estando presente no café, chá-verde e guaraná, entre outros. O receptor sensor de xenobióticos Receptor Nuclear subfamília 1, grupo I, membro 3 (Nr1i3, mais conhecido como Androstano Consititutivo - Car) é um regulador chave da biotransformação e excreção de substâncias e nenhuma descrição consistente dos efeitos da cafeína sobre este receptor foi feita. Então, para avaliar os efeitos da cafeína sobre este receptor, realizamos experimentos em camundongos. Primeiramente, camundongos C57/Bl/6 foram tratados diariamente com cafeína (50 mg/kg) por 15 dias e apresentaram um leve, mas significativo, aumento na expressão do Car e do seu gene alvo Cyp2b10. Assim, um segundo experimento foi realizado para verificar os efeitos da cafeína sobre o TCPOBOP (1,4-bis-[2-(3,5-dicloropiridiloxi)]benzeno,3,3′,5,5′-tetracloro-1,4-bis(piridiloxi)benzeno), o mais potente agonista do Nr1i3 de camundongos conhecido. Interessantemente, a cafeína potencializou os efeitos pleiotrópicos do TCPOBOP no fígado dos camundongos, como hepatomegalia, hepatotoxicidade, proliferação celular e perda da comunicação intercelular por junções do tipo gap. Os camundongos tratados com cafeína e TCPOBOP apresentaram maior expressão gênica de Nr1i3 e Cyp2b10, quando comparados aos camundongos tratados apenas com cafeína ou TCPOBOP. Juntos, nossos resultados indicam que a cafeína aumenta a expressão do receptor CAR em fígados de camundongos C57/Bl/6, porém nesta etapa ainda não é possível afirmar se estes efeitos são direta ou indiretamente mediados pelo Nr1i3...


Asunto(s)
Animales , Femenino , Ratas , Androstanos/efectos adversos , Cafeína/administración & dosificación , Cafeína/efectos adversos , Expresión Génica , Hepatocitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA