Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Rep ; 7(1): 6442, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28743941

RESUMEN

Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.


Asunto(s)
Antozoos/genética , Transcriptoma , Animales , Antozoos/fisiología , Glucólisis/genética , Océano Índico , Mitocondrias/genética , Mitocondrias/metabolismo , Oxígeno/metabolismo
2.
Sci Rep ; 7: 45362, 2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28361923

RESUMEN

Coral reefs are subject to coral bleaching manifested by the loss of endosymbiotic algae from coral host tissue. Besides algae, corals associate with bacteria. In particular, bacteria residing in the surface mucus layer are thought to mediate coral health, but their role in coral bleaching is unknown. We collected mucus from bleached and healthy Porites lobata colonies in the Persian/Arabian Gulf (PAG) and the Red Sea (RS) to investigate bacterial microbiome composition using 16S rRNA gene amplicon sequencing. We found that bacterial community structure was notably similar in bleached and healthy corals, and the most abundant bacterial taxa were identical. However, fine-scale differences in bacterial community composition between the PAG and RS were present and aligned with predicted differences in sulfur- and nitrogen-cycling processes. Based on our data, we argue that bleached corals benefit from the stable composition of mucus bacteria that resemble their healthy coral counterparts and presumably provide a conserved suite of protective functions, but monitoring of post-bleaching survival is needed to further confirm this assumption. Conversely, fine-scale site-specific differences highlight flexibility of the bacterial microbiome that may underlie adjustment to local environmental conditions and contribute to the widespread success of Porites lobata.


Asunto(s)
Antozoos/microbiología , Bacterias/clasificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Arrecifes de Coral , ADN de Algas/genética , ADN Bacteriano/genética , ADN Ribosómico/genética , Microbiota , Moco/microbiología , Nitrógeno/metabolismo , Océanos y Mares , Filogenia , Azufre/metabolismo
3.
J Biogeogr ; 44(3): 674-686, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28286360

RESUMEN

AIM: Coral reefs rely on the symbiosis between scleractinian corals and intracellular, photosynthetic dinoflagellates of the genus Symbiodinium making the assessment of symbiont diversity critical to our understanding of ecological resilience of these ecosystems. This study characterizes Symbiodinium diversity around the Arabian Peninsula, which contains some of the most thermally diverse and understudied reefs on Earth. LOCATION: Shallow water coral reefs throughout the Red Sea (RS), Sea of Oman (SO), and Persian/Arabian Gulf (PAG). METHODS: Next-generation sequencing of the ITS2 marker gene was used to assess Symbiodinium community composition and diversity comprising 892 samples from 46 hard and soft coral genera. RESULTS: Corals were associated with a large diversity of Symbiodinium, which usually consisted of one or two prevalent symbiont types and many types at low abundance. Symbiodinium communities were strongly structured according to geographical region and to a lesser extent by coral host identity. Overall symbiont communities were composed primarily of species from clade A and C in the RS, clade A, C, and D in the SO, and clade C and D in the PAG, representing a gradual shift from C- to D-dominated coral hosts. The analysis of symbiont diversity in an Operational Taxonomic Unit (OTU)-based framework allowed the identification of differences in symbiont taxon richness over geographical regions and host genera. MAIN CONCLUSIONS: Our study represents a comprehensive overview over biogeography and molecular diversity of Symbiodinium in the Arabian Seas, where coral reefs thrive in one of the most extreme environmental settings on the planet. As such our data will serve as a baseline for further exploration into the effects of environmental change on host-symbiont pairings and the identification and ecological significance of Symbiodinium types from regions already experiencing 'Future Ocean' conditions.

4.
PLoS One ; 11(11): e0163939, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27828965

RESUMEN

Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29-33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2-4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.


Asunto(s)
Antozoos/fisiología , Arrecifes de Coral , Ecosistema , Estaciones del Año , Absorción Fisicoquímica , Animales , Bacterias/clasificación , Bacterias/genética , Clorofila/metabolismo , Clorofila A , Conservación de los Recursos Naturales/métodos , Geografía , Océano Índico , Microalgas/clasificación , Microalgas/crecimiento & desarrollo , Oxígeno/metabolismo , Salinidad , Agua de Mar/química , Agua de Mar/microbiología , Temperatura , Movimientos del Agua
5.
Mol Ecol ; 24(13): 3501-11, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26018191

RESUMEN

The significance of bacteria for eukaryotic functioning is increasingly recognized. Coral reef ecosystems critically rely on the relationship between coral hosts and their intracellular photosynthetic dinoflagellates, but the role of the associated bacteria remains largely theoretical. Here, we set out to relate coral-associated bacterial communities of the fungid host species Ctenactis echinata to environmental settings (geographic location, substrate cover, summer/winter, nutrient and suspended matter concentrations) and coral host abundance. We show that bacterial diversity of C. echinata aligns with ecological differences between sites and that coral colonies sampled at the species' preferred habitats are primarily structured by one bacterial taxon (genus Endozoicomonas) representing more than 60% of all bacteria. In contrast, host microbiomes from lower populated coral habitats are less structured and more diverse. Our study demonstrates that the content and structure of the coral microbiome aligns with environmental differences and denotes habitat adequacy. Availability of a range of coral host habitats might be important for the conservation of distinct microbiome structures and diversity.


Asunto(s)
Antozoos/microbiología , Ambiente , Microbiota , Animales , Biodiversidad , Arrecifes de Coral , Océano Índico , ARN Ribosómico 16S/genética , Estaciones del Año , Análisis de Secuencia de ADN , Análisis Espacio-Temporal
6.
PeerJ ; 3: e734, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25653911

RESUMEN

The presence of the cosmopolitan deep-sea coral Eguchipsammia fistula has recently been documented in the Red Sea, occurring in warm (>20 °C), oxygen- and nutrient-limited habitats. We collected colonies of this species from the central Red Sea that successfully resided in aquaria for more than one year. During this period the corals were exposed to increased oxygen levels and nutrition ad libitum unlike in their natural habitat. Specimens of long-term reared E. fistula colonies were incubated for 24 h and calcification (G) as well as respiration rates (R) were measured. In comparison to on-board measurements of G and R rates on freshly collected specimens, we found that G was increased while R was decreased. E. fistula shows extensive tissue growth and polyp proliferation in aquaculture and can be kept at conditions that notably differ from its natural habitat. Its ability to cope with rapid and prolonged changes in regard to prevailing environmental conditions indicates a wide physiological plasticity. This may explain in part the cosmopolitan distribution of this species and emphasizes its value as a deep-sea coral model to study mechanisms of acclimation and adaptation.

7.
Mol Ecol ; 23(4): 965-74, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24350609

RESUMEN

Coral diseases are characterized by microbial community shifts in coral mucus and tissue, but causes and consequences of these changes are vaguely understood due to the complexity and dynamics of coral-associated bacteria. We used 16S rRNA gene microarrays to assay differences in bacterial assemblages of healthy and diseased colonies displaying White Plague Disease (WPD) signs from two closely related Caribbean coral species, Orbicella faveolata and Orbicella franksi. Analysis of differentially abundant operational taxonomic units (OTUs) revealed strong differences between healthy and diseased specimens, but not between coral species. A subsequent comparison to data from two Indo-Pacific coral species (Pavona duerdeni and Porites lutea) revealed distinct microbial community patterns associated with ocean basin, coral species and health state. Coral species were clearly separated by site, but also, the relatedness of the underlying bacterial community structures resembled the phylogenetic relationship of the coral hosts. In diseased samples, bacterial richness increased and putatively opportunistic bacteria were consistently more abundant highlighting the role of opportunistic conditions in structuring microbial community patterns during disease. Our comparative analysis shows that it is possible to derive conserved bacterial footprints of diseased coral holobionts that might help in identifying key bacterial species related to the underlying etiopathology. Furthermore, our data demonstrate that similar-appearing disease phenotypes produce microbial community patterns that are consistent over coral species and oceans, irrespective of the putative underlying pathogen. Consequently, profiling coral diseases by microbial community structure over multiple coral species might allow the development of a comparative disease framework that can inform on cause and relatedness of coral diseases.


Asunto(s)
Antozoos/microbiología , Bacterias/clasificación , Microbiota , Animales , Bacterias/genética , Región del Caribe , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética
8.
ISME J ; 8(1): 31-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23924783

RESUMEN

Coral reefs are threatened throughout the world. A major factor contributing to their decline is outbreaks and propagation of coral diseases. Due to the complexity of coral-associated microbe communities, little is understood in terms of disease agents, hosts and vectors. It is known that compromised health in corals is correlated with shifts in bacterial assemblages colonizing coral mucus and tissue. However, general disease patterns remain, to a large extent, ambiguous as comparative studies over species, regions, or diseases are scarce. Here, we compare bacterial assemblages of samples from healthy (HH) colonies and such displaying signs of White Plague Disease (WPD) of two different coral species (Pavona duerdeni and Porites lutea) from the same reef in Koh Tao, Thailand, using 16S rRNA gene microarrays. In line with other studies, we found an increase of bacterial diversity in diseased (DD) corals, and a higher abundance of taxa from the families that include known coral pathogens (Alteromonadaceae, Rhodobacteraceae, Vibrionaceae). In our comparative framework analysis, we found differences in microbial assemblages between coral species and coral health states. Notably, patterns of bacterial community structures from HH and DD corals were maintained over species boundaries. Moreover, microbes that differentiated the two coral species did not overlap with microbes that were indicative of HH and DD corals. This suggests that while corals harbor distinct species-specific microbial assemblages, disease-specific bacterial abundance patterns exist that are maintained over coral species boundaries.


Asunto(s)
Antozoos/microbiología , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Animales , Bacterias/clasificación , Bacterias/genética , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética
9.
PLoS One ; 8(11): e81834, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24312365

RESUMEN

Coral reefs are facing rapidly changing environments, but implications for reef ecosystem functioning and important services, such as productivity, are difficult to predict. Comparative investigations on coral reefs that are naturally exposed to differing environmental settings can provide essential information in this context. One prevalent phenomenon regularly introducing alterations in water chemistry into coral reefs are internal waves. This study therefore investigates the effect of large amplitude internal waves (LAIW) on primary productivity in coral reefs at the Similan Islands (Andaman Sea, Thailand). The LAIW-exposed west sides of the islands are subjected to sudden drops in water temperature accompanied by enhanced inorganic nutrient concentrations compared to the sheltered east. At the central island, Ko Miang, east and west reefs are only few hundred meters apart, but feature pronounced differences. On the west lower live coral cover (-38 %) coincides with higher turf algae cover (+64 %) and growth (+54 %) compared to the east side. Turf algae and the reef sand-associated microphytobenthos displayed similar chlorophyll a contents on both island sides, but under LAIW exposure, turf algae exhibited higher net photosynthesis (+23 %), whereas the microphytobenthos displayed reduced net and gross photosynthesis (-19 % and -26 %, respectively) accompanied by lower respiration (-42 %). In contrast, the predominant coral Porites lutea showed higher chlorophyll a tissues contents (+42 %) on the LAIW-exposed west in response to lower light availability and higher inorganic nutrient concentrations, but net photosynthesis was comparable for both sides. Turf algae were the major primary producers on the west side, whereas microphytobenthos dominated on the east. The overall primary production rate (comprising all main benthic primary producers) was similar on both island sides, which indicates high primary production variability under different environmental conditions.


Asunto(s)
Arrecifes de Coral , Ecosistema , Fotosíntesis , Tailandia
10.
PLoS One ; 8(6): e66992, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840570

RESUMEN

Overfishing and land-derived eutrophication are major local threats to coral reefs and may affect benthic communities, moving them from coral dominated reefs to algal dominated ones. The Central Red Sea is a highly under-investigated area, where healthy coral reefs are contending against intense coastal development. This in-situ study investigated both the independent and combined effects of manipulated inorganic nutrient enrichment (simulation of eutrophication) and herbivore exclosure (simulation of overfishing) on benthic algae development. Light-exposed and shaded terracotta tiles were positioned at an offshore patch reef close to Thuwal, Saudi Arabia and sampled over a period of 4 months. Findings revealed that nutrient enrichment alone affected neither algal dry mass nor algae-derived C or N production. In contrast, herbivore exclusion significantly increased algal dry mass up to 300-fold, and in conjunction with nutrient enrichment, this total increased to 500-fold. Though the increase in dry mass led to a 7 and 8-fold increase in organic C and N content, respectively, the algal C/N ratio (18±1) was significantly lowered in the combined treatment relative to controls (26±2). Furthermore, exclusion of herbivores significantly increased the relative abundance of filamentous algae on the light-exposed tiles and reduced crustose coralline algae and non-coralline red crusts on the shaded tiles. The combination of the herbivore exclusion and nutrient enrichment treatments pronounced these effects. The results of our study suggest that herbivore reduction, particularly when coupled with nutrient enrichment, favors non-calcifying, filamentous algae growth with high biomass production, which thoroughly outcompetes the encrusting (calcifying) algae that dominates in undisturbed conditions. These results suggest that the healthy reefs of the Central Red Sea may experience rapid shifts in benthic community composition with ensuing effects for biogeochemical cycles if anthropogenic impacts, particularly overfishing, are not controlled.


Asunto(s)
Antozoos/crecimiento & desarrollo , Carbono/análisis , Nitrógeno/análisis , Algas Marinas/fisiología , Animales , Biomasa , Arrecifes de Coral , Ecosistema , Eutrofización , Herbivoria , Océano Índico , Arabia Saudita
11.
PLoS One ; 8(4): e62091, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23630625

RESUMEN

Coral reefs of the Central Red Sea display a high degree of endemism, and are increasingly threatened by anthropogenic effects due to intense local coastal development measures. Overfishing and eutrophication are among the most significant local pressures on these reefs, but there is no information available about their potential effects on the associated microbial community. Therefore, we compared holobiont physiology and 16S-based bacterial communities of tissue and mucus of the hard coral Acropora hemprichii after 1 and 16 weeks of in-situ inorganic nutrient enrichment (via fertilizer diffusion) and/or herbivore exclusion (via caging) in an offshore reef of the Central Red Sea. Simulated eutrophication and/or overfishing treatments did not affect coral physiology with respect to coral respiration rates, chlorophyll a content, zooxanthellae abundance, or δ (15)N isotopic signatures. The bacterial community of A. hemprichii was rich and uneven, and diversity increased over time in all treatments. While distinct bacterial species were identified as a consequence of eutrophication, overfishing, or both, two bacterial species that could be classified to the genus Endozoicomonas were consistently abundant and constituted two thirds of bacteria in the coral. Several nitrogen-fixing and denitrifying bacteria were found in the coral specimens that were exposed to experimentally increased nutrients. However, no particular bacterial species was consistently associated with the coral under a given treatment and the single effects of manipulated eutrophication and overfishing could not predict the combined effect. Our data underlines the importance of conducting field studies in a holobiont framework, taking both, physiological and molecular measures into account.


Asunto(s)
Antozoos/fisiología , Eutrofización , Explotaciones Pesqueras , Gammaproteobacteria/genética , Análisis de Varianza , Animales , Antozoos/microbiología , Bacterias/genética , Biodiversidad , Conservación de los Recursos Naturales , Gammaproteobacteria/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Océano Índico , Tipificación Molecular , Fijación del Nitrógeno , Filogenia , Análisis de Componente Principal , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA