Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Entropy (Basel) ; 21(2)2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33266868

RESUMEN

Discriminative feature extraction and rolling element bearing failure diagnostics are very important to ensure the reliability of rotating machines. Therefore, in this paper, we propose multi-scale wavelet Shannon entropy as a discriminative fault feature to improve the diagnosis accuracy of bearing fault under variable work conditions. To compute the multi-scale wavelet entropy, we consider integrating stationary wavelet packet transform with both dispersion (SWPDE) and permutation (SWPPE) entropies. The multi-scale entropy features extracted by our proposed methods are then passed on to the kernel extreme learning machine (KELM) classifier to diagnose bearing failure types with different severities. In the end, both the SWPDE-KELM and the SWPPE-KELM methods are evaluated on two bearing vibration signal databases. We compare these two feature extraction methods to a recently proposed method called stationary wavelet packet singular value entropy (SWPSVE). Based on our results, we can say that the diagnosis accuracy obtained by the SWPDE-KELM method is slightly better than the SWPPE-KELM method and they both significantly outperform the SWPSVE-KELM method.

2.
Entropy (Basel) ; 21(6)2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-33267254

RESUMEN

Bearing fault diagnosis methods play an important role in rotating machine health monitoring. In recent years, various intelligent fault diagnosis methods have been proposed, which are mainly based on the features extraction method combined with either shallow or deep learning methods. During the last few years, Shannon entropy features have been widely used in machine health monitoring, improving the accuracy of the bearing fault diagnosis process. Therefore, in this paper, we consider the combination of multi-scale stationary wavelet packet analysis with the Fourier amplitude spectrum to obtain a new discriminative Shannon entropy feature that we call stationary wavelet packet Fourier entropy (SWPFE). Features extracted by our SWPFE method are then passed onto a shallow kernel extreme learning machine (KELM) classifier to diagnose bearing failure types with different severities. The proposed method was applied on two experimental vibration signal databases of a rolling element bearing and compared to two recently proposed methods called stationary wavelet packet permutation entropy (SWPPE) and stationary wavelet packet dispersion entropy (SWPPE). Based on our results, we can say that the proposed method is able to achieve better accuracy levels than both the SWPPE and SWPDE methods using fewer failure features. Further, as our method does not require any hyperparameter calibration step, it is less dependent on user experience/expertise.

3.
Meat Sci ; 140: 59-65, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29533812

RESUMEN

Guinea pig meat consumption is increasing exponentially worldwide. The evaluation of the contribution of carcass components to carcass quality potentially can allow for the estimation of the value added to food animal origin and make research in guinea pigs more practicable. The aim of this study was to propose a methodology for modelling the contribution of different carcass components to the overall carcass quality of guinea pigs by using non-invasive pre- and post mortem carcass measurements. The selection of predictors was developed through correlation analysis and statistical significance; whereas the prediction models were based on Multiple Linear Regression. The prediction results showed higher accuracy in the prediction of carcass component contribution expressed in grams, compared to when expressed as a percentage of carcass quality components. The proposed prediction models can be useful for the guinea pig meat industry and research institutions by using non-invasive and time- and cost-efficient carcass component measuring techniques.


Asunto(s)
Composición Corporal , Carne/normas , Animales , Femenino , Cobayas/anatomía & histología , Modelos Lineales , Masculino
4.
Comput Intell Neurosci ; 2017: 7951395, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28261267

RESUMEN

Here is proposed a novel method for decomposing a nonstationary time series in components of low and high frequency. The method is based on Multilevel Singular Value Decomposition (MSVD) of a Hankel matrix. The decomposition is used to improve the forecasting accuracy of Multiple Input Multiple Output (MIMO) linear and nonlinear models. Three time series coming from traffic accidents domain are used. They represent the number of persons with injuries in traffic accidents of Santiago, Chile. The data were continuously collected by the Chilean Police and were weekly sampled from 2000:1 to 2014:12. The performance of MSVD is compared with the decomposition in components of low and high frequency of a commonly accepted method based on Stationary Wavelet Transform (SWT). SWT in conjunction with the Autoregressive model (SWT + MIMO-AR) and SWT in conjunction with an Autoregressive Neural Network (SWT + MIMO-ANN) were evaluated. The empirical results have shown that the best accuracy was achieved by the forecasting model based on the proposed decomposition method MSVD, in comparison with the forecasting models based on SWT.


Asunto(s)
Accidentes de Tránsito , Predicción/métodos , Modelos Teóricos , Redes Neurales de la Computación , Humanos , Análisis de Ondículas
5.
ScientificWorldJournal ; 2014: 152375, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25243200

RESUMEN

Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0:26%, followed by MA-ARIMA with a MAPE of 1:12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15:51%.


Asunto(s)
Accidentes de Tránsito/tendencias , Análisis de Series de Tiempo Interrumpido/tendencias , Redes Neurales de la Computación , Predicción/métodos , Humanos , Análisis de Series de Tiempo Interrumpido/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA