Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
FEBS Lett ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724486

RESUMEN

Tyrosine protein phosphatase non-receptor type 1 (PTP1B; also known as protein tyrosine phosphatase 1B) is a member of the protein tyrosine phosphatase (PTP) family and is a soluble enzyme that plays an essential role in different physiological processes, including the regulation of metabolism, specifically in insulin and leptin sensitivity. PTP1B is crucial in the pathogenesis of type 2 diabetes mellitus and obesity. These biological functions have made PTP1B validated as an antidiabetic and anti-obesity, and potentially anticancer, molecular target. Four main approaches aim to inhibit PTP1B: orthosteric, allosteric, bidentate inhibition, and PTPN1 gene silencing. Developing a potent and selective PTP1B inhibitor is still challenging due to the enzyme's ubiquitous expression, subcellular location, and structural properties. This article reviews the main advances in the study of PTP1B since it was first isolated in 1988, as well as recent contextual information related to the PTP family to which this protein belongs. Furthermore, we offer an overview of the role of PTP1B in diabetes and obesity, and the challenges to developing selective, effective, potent, bioavailable, and cell-permeable compounds that can inhibit the enzyme.

2.
PLoS One ; 19(4): e0301604, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635649

RESUMEN

The red abalone (Haliotis rufescens) represents North America's most important aquaculture species. Its hepatopancreas is rich in cellulases and other polysaccharide-degrading enzymes, which provide it the remarkable ability to digest cellulose-rich macroalgae; nevertheless, its cellulolytic systems are poorly explored. This manuscript describes some functional and structural properties of an endogenous trimeric glycosylated endoglucanase from H. rufescens. The purified enzyme showed a molecular mass of 23.4 kDa determined by MALDI-TOF mass spectrometry, which behaved as a homotrimer in gel filtration chromatography and zymograms. According to the periodic acid-Schiff reagent staining, detecting sugar moieties in SDS-PAGE gel confirmed that abalone cellulase is a glycoprotein. Hydrolysis of cello-oligosaccharides and p-nitrophenyl-ß-D-glucopyranosides confirmed its endo/exoactivity. A maximum enzyme activity toward 0.5% (w/v) carboxymethylcellulose of 53.9 ± 1.0 U/mg was achieved at 45°C and pH 6.0. We elucidated the abalone cellulase primary structure using proteases and mass spectrometry methods. Based on these results and using a bioinformatic approach, we identified the gene encoding this enzyme and deduced its full-length amino acid sequence; the mature protein comprised 177 residues with a calculated molecular mass of 19.1 kDa and, according to sequence similarity, it was classified into the glycosyl-hydrolase family 45 subfamily B. An AlphaFold theoretical model and docking simulations with cellopentaose confirmed that abalone cellulase is a ß-sheet rich protein, as also observed by circular dichroism experiments, with conserved catalytic residues: Asp26, Asn109, and Asp134. Interestingly, the AlphaFold-Multimer analysis indicated a trimeric assembly for abalone cellulase, which supported our experimental findings. The discovery and characterization of these enzymes may contribute to developing efficient cellulose bioconversion processes for biofuels and sustainable bioproducts.


Asunto(s)
Celulasa , Gastrópodos , Animales , Celulasa/metabolismo , Gastrópodos/genética , Secuencia de Aminoácidos , Celulosa/metabolismo , Polisacáridos
3.
Biomolecules ; 13(4)2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-37189355

RESUMEN

Profilins are ubiquitous allergens with conserved structural elements. Exposure to profilins from different sources leads to IgE-cross-reactivity and the pollen-latex-food syndrome. Monoclonal antibodies (mAbs) that cross-react with plant profilins and block IgE-profilin interactions are relevant for diagnosis, epitope mapping, and specific immunotherapy. We generated IgGs mAbs, 1B4, and 2D10, against latex profilin (anti-rHev b 8) that inhibit the interaction of IgE and IgG4 antibodies from sera of latex- and maize-allergic patients by 90% and 40%, respectively. In this study, we evaluated 1B4 and 2D10 recognition towards different plant profilins, and mAbs recognition of rZea m 12 mutants by ELISAs. Interestingly, 2D10 highly recognized rArt v 4.0101 and rAmb a 8.0101, and to a lesser extent rBet v 2.0101, and rFra e 2.2, while 1B4 showed recognition for rPhl p 12.0101 and rAmb a 8.0101. We demonstrated that residue D130 at the α-helix 3 in profilins, which is part of the Hev b 8 IgE epitope, is essential for the 2D10 recognition. The structural analysis suggests that the profilins containing E130 (rPhl p 12.0101, rFra e 2.2, and rZea m 12.0105) show less binding with 2D10. The distribution of negative charges on the profilins' surfaces at the α-helices 1 and 3 is relevant for the 2D10 recognition, and that may be relevant to explain profilins' IgE cross-reactivity.


Asunto(s)
Hipersensibilidad , Profilinas , Humanos , Profilinas/química , Profilinas/metabolismo , Látex , Secuencia de Aminoácidos , Alérgenos , Inmunoglobulina E , Proteínas de Plantas/metabolismo
4.
FEBS J ; 290(18): 4496-4512, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37178351

RESUMEN

Substrate-binding proteins (SBPs) are used by organisms from the three domains of life for transport and signalling. SBPs are composed of two domains that collectively trap ligands with high affinity and selectivity. To explore the role of the domains and the integrity of the hinge region between them in the function and conformation of SBPs, here, we describe the ligand binding, conformational stability and folding kinetics of the Lysine Arginine Ornithine (LAO) binding protein from Salmonella thiphimurium and constructs corresponding to its two independent domains. LAO is a class II SBP formed by a continuous and a discontinuous domain. Contrary to the expected behaviour based on their connectivity, the discontinuous domain shows a stable native-like structure that binds l-arginine with moderate affinity, whereas the continuous domain is barely stable and shows no detectable ligand binding. Regarding folding kinetics, studies of the entire protein revealed the presence of at least two intermediates. While the unfolding and refolding of the continuous domain exhibited only a single intermediate and simpler and faster kinetics than LAO, the folding mechanism of the discontinuous domain was complex and involved multiple intermediates. These findings suggest that in the complete protein the continuous domain nucleates folding and that its presence funnels the folding of the discontinuous domain avoiding nonproductive interactions. The strong dependence of the function, stability and folding pathway of the lobes on their covalent association is most likely the result of the coevolution of both domains as a single unit.


Asunto(s)
Proteínas Portadoras , Pliegue de Proteína , Cinética , Lisina , Ligandos , Laos , Desnaturalización Proteica , Termodinámica , Conformación Proteica
5.
Protein Sci ; 32(6): e4651, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37145875

RESUMEN

Glucosamine-6-phosphate (GlcN6P) deaminases from Escherichia coli (EcNagBI) and Shewanella denitrificans (SdNagBII) are special examples of what constitute nonhomologous isofunctional enzymes due to their convergence, not only in catalysis, but also in cooperativity and allosteric properties. Additionally, we found that the sigmoidal kinetics of SdNagBII cannot be explained by the existing models of homotropic activation. This study describes the regulatory mechanism of SdNagBII using enzyme kinetics, isothermal titration calorimetry (ITC), and X-ray crystallography. ITC experiments revealed two different binding sites with distinctive thermodynamic signatures: a single binding site per monomer for the allosteric activator N-acetylglucosamine 6-phosphate (GlcNAc6P) and two binding sites per monomer for the transition-state analog 2-amino-2-deoxy-D-glucitol 6-phosphate (GlcNol6P). Crystallographic data demonstrated the existence of an unusual allosteric site that can bind both GlcNAc6P and GlcNol6P, implying that the homotropic activation of this enzyme arises from the occupation of the allosteric site by the substrate. In this work we describe the presence of this novel allosteric site in the SIS-fold deaminases, which is responsible for the homotropic and heterotropic activation of SdNagBII by GlcN6P and GlcNAc6P, respectively. This study unveils an original mechanism to generate a high degree of homotropic activation in SdNagBII, mimicking the allosteric and cooperative properties of hexameric EcNagBI but with a reduced number of subunits.


Asunto(s)
Escherichia coli , Fosfatos , Sitio Alostérico , Regulación Alostérica , Escherichia coli/metabolismo , Sitios de Unión , Fosfatos/metabolismo , Cinética
6.
Fish Shellfish Immunol ; 131: 1264-1274, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36400370

RESUMEN

Galectins are an evolutionarily ancient family of lectins characterized by their affinity for ß-galactosides and a conserved binding site in the carbohydrate recognition domain (CRD). These lectins are involved in multiple physiological functions, including the recognition of glycans on the surface of viruses and bacteria. This feature supports their role in innate immune responses in marine mollusks. Here, we identified and characterized a galectin, from the mollusk Haliotis rufescens (named HrGal), with four CRDs that belong to the tandem-repeat type. HrGal was purified by affinity chromatography in a galactose-agarose resin and exhibited a molecular mass of 64.11 kDa determined by MALDI-TOF mass spectrometry. The identity of HrGal was verified by sequencing, confirming that it is a 555 amino acid protein with a mass of 63.86 kDa. This protein corresponds to a galectin reported in GenBank with accession number AHX26603. HrGal is stable in the presence of urea, reducing agents, and ions such as Cu2+ and Zn2+. The recombinant galectin (rHrGal) was purified from inclusion bodies in the presence of these ions. A theoretical model obtained with the AlphaFold server exhibits four non-identical CRDs, with a ß sandwich folding and the representative motifs for binding ß-galactosides. This allows us to classify HrGal within the tandem repeat galectin family. On the basis of a phylogenetic analysis, we found that the mollusk sequences form a monophyletic group of tetradomain galectins unrelated to vertebrate galectins. HrGal showed specificity for galactosides and glucosides but only the sulfated sugars heparin and ι-carrageenan inhibited its hemagglutinating activity with a minimum inhibitory concentration of 4 mM and 6.25 X 10-5% respectively. The position of the sulfate groups seemed crucial for binding, both by carrageenans and heparin.


Asunto(s)
Galectinas , Gastrópodos , Animales , Galectinas/química , Filogenia , Sulfatos , Galactósidos/química , Gastrópodos/genética , Gastrópodos/metabolismo , Polisacáridos , Moluscos/genética , Heparina
7.
Commun Biol ; 5(1): 748, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35902770

RESUMEN

Allergies have become a rising health problem, where plentiful substances can trigger IgE-mediated allergies in humans. While profilins are considered minor allergens, these ubiquitous proteins are primary molecules involved in cross-reactivity and pollen-food allergy syndrome. Here we report the first crystal structures of murine Fab/IgE, with its chains naturally paired, in complex with the allergen profilin from Hevea brasiliensis (Hev b 8). The crystallographic models revealed that the IgE's six complementarity-determining regions (CDRs) interact with the allergen, comprising a rigid paratope-epitope surface of 926 Å2, which includes an extensive network of interactions. Interestingly, we also observed previously unreported flexibility at Fab/IgE's elbow angle, which did not influence the shape of the paratope. The Fab/IgE exhibits a high affinity for Hev b 8, even when using 1 M NaCl in BLI experiments. Finally, based on the encouraging cross-reactivity assays using two mutants of the maize profilin (Zea m 12), this antibody could be a promising tool in IgE engineering for diagnosis and research applications.


Asunto(s)
Hipersensibilidad a los Alimentos , Profilinas , Alérgenos/química , Alérgenos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Contráctiles/metabolismo , Humanos , Inmunoglobulina E , Ratones , Proteínas de Microfilamentos/metabolismo , Profilinas/genética , Profilinas/metabolismo
8.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163274

RESUMEN

Eukarya pyruvate kinases possess glutamate at position 117 (numbering of rabbit muscle enzyme), whereas bacteria have either glutamate or lysine. Those with E117 are K+-dependent, whereas those with K117 are K+-independent. In a phylogenetic tree, 80% of the sequences with E117 are occupied by T113/K114/T120 and 77% of those with K117 possess L113/Q114/(L,I,V)120. This work aims to understand these residues' contribution to the K+-independent pyruvate kinases using the K+-dependent rabbit muscle enzyme. Residues 117 and 120 are crucial in the differences between the K+-dependent and -independent mutants. K+-independent activity increased with L113 and Q114 to K117, but L120 induced structural differences that inactivated the enzyme. T120 appears to be key in folding the protein and closure of the lid of the active site to acquire its active conformation in the K+-dependent enzymes. E117K mutant was K+-independent and the enzyme acquired the active conformation by a different mechanism. In the K+-independent apoenzyme of Mycobacterium tuberculosis, K72 (K117) flips out of the active site; in the holoenzyme, K72 faces toward the active site bridging the substrates through water molecules. The results provide evidence that two different mechanisms have evolved for the catalysis of this reaction.


Asunto(s)
Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Piruvato Quinasa/ultraestructura , Secuencia de Aminoácidos/genética , Animales , Apoenzimas/metabolismo , Sitios de Unión , Catálisis , Dominio Catalítico , Ácido Glutámico/metabolismo , Lisina/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Filogenia , Potasio/metabolismo , Conformación Proteica , Conejos
9.
J Mol Biol ; 433(18): 167153, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34271011

RESUMEN

The ability to design stable proteins with custom-made functions is a major goal in biochemistry with practical relevance for our environment and society. Understanding and manipulating protein stability provide crucial information on the molecular determinants that modulate structure and stability, and expand the applications of de novo proteins. Since the (ß/⍺)8-barrel or TIM-barrel fold is one of the most common functional scaffolds, in this work we designed a collection of stable de novo TIM barrels (DeNovoTIMs), using a computational fixed-backbone and modular approach based on improved hydrophobic packing of sTIM11, the first validated de novo TIM barrel, and subjected them to a thorough folding analysis. DeNovoTIMs navigate a region of the stability landscape previously uncharted by natural TIM barrels, with variations spanning 60 degrees in melting temperature and 22 kcal per mol in conformational stability throughout the designs. Significant non-additive or epistatic effects were observed when stabilizing mutations from different regions of the barrel were combined. The molecular basis of epistasis in DeNovoTIMs appears to be related to the extension of the hydrophobic cores. This study is an important step towards the fine-tuned modulation of protein stability by design.


Asunto(s)
Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Estabilidad Proteica , Proteínas/química , Evolución Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Temperatura
10.
Arch Biochem Biophys ; 699: 108750, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33421379

RESUMEN

Bovine ß-lactoglobulin, an abundant protein in whey, is a promising nanocarrier for peroral administration of drug-like hydrophobic molecules, a process that involves transit through the different acidic conditions of the human digestive tract. Among the several pH-induced conformational rearrangements that this lipocalin undergoes, the Tanford transition is particularly relevant. This transition, which occurs with a midpoint around neutral pH, involves a conformational change of the E-F loop that regulates accessibility to the primary binding site. The effect of this transition on the ligand binding properties of this protein has scarcely been explored. In this study, we carried out an energetic and structural characterization of ß-lactoglobulin molecular recognition at pH values above and below the zone in which the Tanford transition occurs. The combined analysis of crystallographic, calorimetric, and molecular dynamics data sheds new light on the interplay between self-association, ligand binding, and the Tanford pre- and post-transition conformational states, revealing novel aspects underlying the molecular recognition mechanism of this enigmatic lipocalin.


Asunto(s)
Lactoglobulinas/metabolismo , Dodecil Sulfato de Sodio/metabolismo , Animales , Sitios de Unión , Bovinos , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Lactoglobulinas/química , Ligandos , Simulación de Dinámica Molecular , Transición de Fase , Unión Proteica , Conformación Proteica , Dodecil Sulfato de Sodio/química , Termodinámica
11.
FEBS J ; 288(4): 1286-1304, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32621793

RESUMEN

The enzyme 6-phosphogluconate dehydrogenase catalyzes the conversion of 6-phosphogluconate to ribulose-5-phosphate. It represents an important reaction in the oxidative pentose phosphate pathway, producing a ribose precursor essential for nucleotide and nucleic acid synthesis. We succeeded, for the first time, to determine the three-dimensional structure of this enzyme from an acetic acid bacterium, Gluconacetobacter diazotrophicus (Gd6PGD). Active Gd6PGD, a homodimer (70 kDa), was present in both the soluble and the membrane fractions of the nitrogen-fixing microorganism. The Gd6PGD belongs to the newly described subfamily of short-chain (333 AA) 6PGDs, compared to the long-chain subfamily (480 AA; e.g., Ovis aries, Homo sapiens). The shorter amino acid sequence in Gd6PGD induces the exposition of hydrophobic residues in the C-terminal domain. This distinct structural feature is key for the protein to associate with the membrane. Furthermore, in terms of function, the short-chain 6PGD seems to prefer NAD+ over NADP+ , delivering NADH to the membrane-bound NADH dehydrogenase of the microorganisms required by the terminal oxidases to reduce dioxygen to water for energy conservation. ENZYME: ECnonbreakingspace1.1.1.343. DATABASE: Structural data are available in PDB database under the accession number 6VPB.


Asunto(s)
Proteínas Bacterianas/metabolismo , Gluconacetobacter/enzimología , Gluconatos/metabolismo , Fosfogluconato Deshidrogenasa/metabolismo , Ribulosafosfatos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Gluconacetobacter/genética , Gluconatos/química , Humanos , Modelos Químicos , Modelos Moleculares , Estructura Molecular , NAD/metabolismo , NADP/metabolismo , Fosfogluconato Deshidrogenasa/clasificación , Fosfogluconato Deshidrogenasa/genética , Filogenia , Dominios Proteicos , Multimerización de Proteína , Ribulosafosfatos/química , Homología de Secuencia de Aminoácido
12.
Mol Immunol ; 128: 10-21, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33045539

RESUMEN

The production of specific antibodies able to recognize allergens from different sources or block interactions between allergens and antibodies mediating allergic reactions is crucial for developing successful tools for diagnostics and therapeutics. Panallergens are highly conserved proteins present in widely different species, implicated in relevant cross-reactions. The panallergen latex profilin (Hev b 8) has been associated with the latex-food-pollen syndrome. We generated five monoclonal IgGs and one IgE from murine hybridomas against recombinant Hev b 8 and evaluated their interaction with this allergen using ELISA and biolayer interferometry (BLI). Affinity purified mAbs exhibited high binding affinities towards rHev b 8, with KD1 values ranging from 10-10 M to 10-11 M. Some of these antibodies also recognized the recombinant profilins from maize and tomato (Zea m 12 and Sola l 1), and the ash tree pollen (Fra e 2). Competition ELISA demonstrated that some mAb pairs could bind simultaneously to rHev b 8. Using BLI, we detected competitive, non-competitive, and partial-competition interactions between pairs of mAbs with rHev b 8, suggesting the existence of at least two non-overlapping epitopes on the surface of this allergen. Three-dimensional models of the Fv of 1B4 and 2D10 IgGs and docking simulations of these Fvs with rHev b 8 revealed these epitopes. Furthermore, these two mAbs inhibited the interaction of polyclonal IgE and IgG4 antibodies from profilin-allergic patients with rHev b 8, indicating that the mAbs and the antibodies present in sera from allergic patients bind to overlapping epitopes on the allergen. These mAbs can be useful tools for immune-localization studies, immunoassay development, or standardization of allergenic products.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos de Plantas/inmunología , Reacciones Cruzadas/inmunología , Epítopos/inmunología , Látex/inmunología , Profilinas/inmunología , Alérgenos/inmunología , Secuencia de Aminoácidos , Animales , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Hipersensibilidad al Látex/inmunología , Ratones , Ratones Endogámicos BALB C , Proteínas de Plantas/inmunología , Polen/inmunología
13.
Fish Shellfish Immunol ; 100: 246-255, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32151687

RESUMEN

Although information about invertebrate lysozymes is scarce, these enzymes have been described as components of the innate immune system, functioning as antibacterial proteins. Here we describe the first thermodynamic and structural study of a new C-type lysozyme from a Pacific white shrimp Litopenaeus vannamei (LvL), which has shown high activity against both Gram (+) and Gram (-) bacteria including Vibrio sp. that is one of the most severe pathogens in penaeid shrimp aquaculture. Compared with hen egg-white lysozyme, its sequence harbors a seven-residue insertion from amino acid 97 to 103, and a nine-residue extension at the C-terminus only found in penaeid crustaceans, making this enzyme one of the longest lysozyme reported to date. LvL was crystallized in the presence and absence of chitotriose. The former crystallized as a monomer in space group P61 and the latter in P212121 with two monomers in the asymmetric unit. Since the enzyme crystallized at a pH where lysozyme activity is deficient, the ligand could not be observed in the P61 structure; therefore, we performed a docking simulation with chitotriose to compare with the hen egg lysozyme crystallized in the presence of the ligand. Remarkably, additional amino acids in LvL caused an increase in the length of α-helix H4 (residues 97-103) that is directly related to ligand recognition. The Ka for chitotriose (4.1 × 105 M-1), as determined by Isothermal Titration Calorimetry, was one order of magnitude higher than those for lysozymes from hen and duck eggs. Our results revealed new interactions of chitiotriose with residues in helix H4.


Asunto(s)
Muramidasa/química , Penaeidae/enzimología , Trisacáridos/metabolismo , Secuencia de Aminoácidos , Animales , Calorimetría , Pollos , Patos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Inmunidad Innata , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Vibrio/efectos de los fármacos
14.
FEBS J ; 287(4): 763-782, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31348608

RESUMEN

The study of binding thermodynamics is essential to understand how affinity and selectivity are acquired in molecular complexes. Periplasmic binding proteins (PBPs) are macromolecules of biotechnological interest that bind a broad number of ligands and have been used to design biosensors. The lysine-arginine-ornithine binding protein (LAO) is a PBP of 238 residues that binds the basic amino acids l-arginine and l-histidine with nm and µm affinity, respectively. It has been shown that the affinity difference for arginine and histidine binding is caused by enthalpy, this correlates with the higher number of protein-ligand contacts formed with arginine. In order to elucidate the structural bases that determine binding affinity and selectivity in LAO, the contribution of protein-ligand contacts to binding energetics was assessed. To this end, an alanine scanning of the LAO-binding site residues was performed and arginine and histidine binding were characterized by isothermal titration calorimetry and X-ray crystallography. Although unexpected enthalpy and entropy changes were observed in some mutants, thermodynamic data correlated with structural information, especially, the binding heat capacity change. We found that selectivity is conferred by several residues rather than exclusive arginine-protein interactions. Furthermore, crystallographic structures revealed that protein-ligand contributions to binding thermodynamics are highly influenced by the solvent. Finally, we found a similar backbone conformation in all the closed structures obtained, but different structures in the open state, suggesting that the binding site residues of LAO play an important role in stabilizing not only the holo conformation, but also the apo state. DATABASE: Structural data are available in the Protein Data Bank database under the accession numbers 6MLE, 6MLN, 6MLG, 6MKX, 6MLI, 6MLA, 6MKU, 6MKW, 6ML0, 6MLD, 6MLV, 6MLO, 6MLP, 6ML9, 6MLJ.


Asunto(s)
Arginina/química , Proteínas Bacterianas/química , Proteínas Portadoras/química , Escherichia coli/metabolismo , Histidina/química , Salmonella typhimurium/metabolismo , Agua/química , Secuencias de Aminoácidos , Arginina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Histidina/metabolismo , Cinética , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhimurium/genética , Especificidad por Sustrato , Termodinámica , Agua/metabolismo
15.
FEBS J ; 286(23): 4778-4796, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31291689

RESUMEN

Plant chitinases are enzymes that have several functions, including providing protection against pathogens. Agave tequilana is an economically important plant that is poorly studied. Here, we identified a chitinase from short reads of the A. tequilana transcriptome (AtChi1). A second chitinase, differing by only six residues from the first, was isolated from total RNA of plants infected with Fusarium oxysporum (AtChi2). Both enzymes were overexpressed in Escherichia coli and analysis of their sequences indicated that they belong to the class I glycoside hydrolase family19, whose members exhibit two domains: a carbohydrate-binding module and a catalytic domain, connected by a flexible linker. Activity assays and thermal shift experiments demonstrated that the recombinant Agave enzymes are highly thermostable acidic endochitinases with Tm values of 75 °C and 71 °C. Both exhibit a molecular mass close to 32 kDa, as determined by MALDI-TOF, and experimental pIs of 3.7 and 3.9. Coupling small-angle x-ray scattering information with homology modeling and docking simulations allowed us to structurally characterize both chitinases, which notably show different interactions in the binding groove. Even when the six different amino acids are all exposed to solvent in the loops located near the linker and opposite to the binding site, they confer distinct kinetic parameters against colloidal chitin and similar affinity for (GlnNAc)6, as shown by isothermal titration calorimetry. Interestingly, binding is more enthalpy-driven for AtChi2. Whereas the physiological role of these chitinases remains unknown, we demonstrate that they exhibit important antifungal activity against chitin-rich fungi such as Aspergillus sp. DATABASE: SAXS structural data are available in the SASBDB database with accession numbers SASDDE7 and SASDDA6. ENZYMES: Chitinases (EC3.2.1.14).


Asunto(s)
Agave/enzimología , Quitinasas/metabolismo , Sitios de Unión , Quitinasas/química , Quitinasas/fisiología , Cumarinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Temperatura , Termodinámica
16.
FEBS J ; 286(5): 882-900, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30589511

RESUMEN

Function, structure, and stability are strongly coupled in obligated oligomers, such as triosephosphate isomerase (TIM). However, little is known about how this coupling evolved. To address this question, five ancestral TIMs (ancTIMs) in the opisthokont lineage were inferred. The encoded proteins were purified and characterized, and spectroscopic and hydrodynamic analysis indicated that all are folded dimers. The catalytic efficiency of ancTIMs is very high and all dissociate into inactive and partially unfolded monomers. The placement of catalytic residues in the three-dimensional structure, as well as the enthalpy-driven binding signature of the oldest ancestor (TIM63) resemble extant TIMs. Although TIM63 dimers dissociate more readily than do extant TIMs, calorimetric data show that the free ancestral subunits are folded to a greater extent than their extant counterparts are, suggesting that full catalytic proficiency was established in the dimer before the stability of the isolated monomer eroded. Notably, the low association energy in ancTIMs is compensated for by a high activation barrier, and by a significant shift in the dimer-monomer equilibrium induced by ligand binding. Our results indicate that before the animal and fungi lineages diverged, TIM was an obligated oligomer with substrate binding properties and catalytic efficiency that resemble that of extant TIMs. Therefore, TIM function and association have been strongly coupled at least for the last third of biological evolution on earth. DATABASES: PDB Entry: 6NEE. ENZYMES: Triosephosphate isomerase 5.3.1.1, Glycerol-3-phosphate dehydrogenase 1.1.1.8.


Asunto(s)
Biocatálisis , Evolución Biológica , Termodinámica , Triosa-Fosfato Isomerasa/química , Triosa-Fosfato Isomerasa/metabolismo , Animales , Cristalografía por Rayos X , Hongos/enzimología , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Análisis Espectral/métodos
17.
Arch Biochem Biophys ; 658: 66-76, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30261166

RESUMEN

We studied the structure, function and thermodynamic properties for the unfolding of the Triosephosphate isomerase (TIM) from Zea mays (ZmTIM). ZmTIM shows a catalytic efficiency close to the diffusion limit. Native ZmTIM is a dimer that dissociates upon dilution into inactive and unfolded monomers. Its thermal unfolding is irreversible with a Tm of 61.6 ±â€¯1.4 °C and an activation energy of 383.4 ±â€¯11.5 kJ mol-1. The urea-induced unfolding of ZmTIM is reversible. Transitions followed by catalytic activity and spectroscopic properties are monophasic and superimposable, indicating that ZmTIM unfolds/refolds in a two-state behavior with an unfolding ΔG°(H20) = 99.8 ±â€¯5.3 kJ mol-1. This contrasts with most other studied TIMs, where folding intermediates are common. The three-dimensional structure of ZmTIM was solved at 1.8 Å. A structural comparison with other eukaryotic TIMs shows a similar number of intramolecular and intermolecular interactions. Interestingly the number of interfacial water molecules found in ZmTIM is lower than those observed in most TIMs that show folding intermediates. Although with the available data, there is no clear correlation between structural properties and the number of equilibrium intermediates in the unfolding of TIM, the identification of such structural properties should increase our understanding of folding mechanisms.


Asunto(s)
Proteínas de Plantas/química , Triosa-Fosfato Isomerasa/química , Zea mays/enzimología , Catálisis , Cristalografía por Rayos X , Humanos , Conformación Proteica , Estabilidad Proteica , Desplegamiento Proteico/efectos de los fármacos , Temperatura , Urea/química
18.
Sci Rep ; 6: 32552, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27586352

RESUMEN

Oligomerization of allergens plays an important role in IgE-mediated reactions, as effective crosslinking of IgE- FcεRI complexes on the cell membrane is dependent on the number of exposed B-cell epitopes in a single allergen molecule or on the occurrence of identical epitopes in a symmetrical arrangement. Few studies have attempted to experimentally demonstrate the connection between allergen dimerization and the ability to trigger allergic reactions. Here we studied plant allergenic profilins rHev b 8 (rubber tree) and rZea m 12 (maize) because they represent an important example of cross-reactivity in the latex-pollen-food syndrome. Both allergens in their monomeric and dimeric states were isolated and characterized by exclusion chromatography and mass spectrometry and were used in immunological in vitro experiments. Their crystal structures were solved, and for Hev b 8 a disulfide-linked homodimer was found. Comparing the structures we established that the longest loop is relevant for recognition by IgE antibodies, whereas the conserved regions are important for cross-reactivity. We produced a novel monoclonal murine IgE (mAb 2F5), specific for rHev b 8, which was useful to provide evidence that profilin dimerization considerably increases the IgE-mediated degranulation in rat basophilic leukemia cells.


Asunto(s)
Alérgenos/química , Hevea/metabolismo , Inmunoglobulina E/inmunología , Proteínas de Plantas/química , Multimerización de Proteína , Zea mays/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/metabolismo , Degranulación de la Célula , Cristalografía por Rayos X , Femenino , Humanos , Hipersensibilidad/sangre , Hipersensibilidad/inmunología , Inmunización , Inmunoglobulina G/metabolismo , Interferometría , Ratones Endogámicos BALB C , Modelos Moleculares , Profilinas/química , Ratas
19.
FEBS Lett ; 590(18): 3243-53, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27543719

RESUMEN

The NprR protein and NprRB signaling peptide comprise a bifunctional quorum-sensing system from the Bacillus cereus group that is involved in transcriptional activation through DNA-binding and in sporulation initiation by binding to Spo0F. We characterized in vitro the direct interactions established by NprR that may be relevant for performing its two functions. Apo-NprR interacted with Spo0F, but not with the target DNA. The NprRB signaling peptide SSKPDIVG that binds strongly to Apo-NprR, failed to bind and disrupt the NprR-Spo0F complex. Finally, the NprR-NprRB complex bound both to Spo0F and the target DNA with similar affinity. Based on our findings, we propose that rather than a switch triggered by NprRB, the NprR/NprRB ratio and the availability of Spo0F binding sites define the function of NprR.


Asunto(s)
Proteínas Bacterianas/metabolismo , Metaloendopeptidasas/metabolismo , Bacillus cereus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , Metaloendopeptidasas/química , Metaloendopeptidasas/genética , Fosfotransferasas/metabolismo , Unión Proteica , Señales de Clasificación de Proteína , Percepción de Quorum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA