Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(17): 48988-48998, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36763277

RESUMEN

In many small communities in the Mediterranean area, groundwater is usually the only water body available. Depending mainly on the surrounding geology, their concentration of naturally occurring radionuclides may pose a radiological hazard. Removal of uranium and radium from drinking water is the best way to avoid it, i.e., reverse osmosis (RO), but consuming a lot of energy. Thus, two modified drinking water treatment plants (DWTPs) using zeolites coated with manganese dioxide as adsorbent material were analyzed as an alternative to RO. Groundwater salinity can negatively affect this process. Radium removal decreased as water salinity increased; but it had a major impact on uranium, rendering the adsorption effectless in one DWTP. Waste management and how to avoid it from becoming radioactive are of major concern. Radium and uranium were associated to the reducible fraction in the filter material and also to the carbonate fraction in the case of uranium. Regeneration of the filter material using KCl solutions was able to remove 81% and 63% of uranium and radium, respectively.


Asunto(s)
Agua Potable , Agua Subterránea , Radiactividad , Radio (Elemento) , Uranio , Contaminantes Radiactivos del Agua , Radio (Elemento)/análisis , Uranio/análisis , Adsorción , Salinidad , Contaminantes Radiactivos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA