Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cancer Discov ; 14(3): 492-507, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197697

RESUMEN

DNA amplifications in cancer do not only harbor oncogenes. We sought to determine whether passenger coamplifications could create collateral therapeutic vulnerabilities. Through an analysis of >3,000 cancer genomes followed by the interrogation of CRISPR-Cas9 loss-of-function screens across >700 cancer cell lines, we determined that passenger coamplifications are accompanied by distinct dependency profiles. In a proof-of-principle study, we demonstrate that the coamplification of the bona fide passenger gene DEAD-Box Helicase 1 (DDX1) creates an increased dependency on the mTOR pathway. Interaction proteomics identified tricarboxylic acid (TCA) cycle components as previously unrecognized DDX1 interaction partners. Live-cell metabolomics highlighted that this interaction could impair TCA activity, which in turn resulted in enhanced mTORC1 activity. Consequently, genetic and pharmacologic disruption of mTORC1 resulted in pronounced cell death in vitro and in vivo. Thus, structurally linked coamplification of a passenger gene and an oncogene can result in collateral vulnerabilities. SIGNIFICANCE: We demonstrate that coamplification of passenger genes, which were largely neglected in cancer biology in the past, can create distinct cancer dependencies. Because passenger coamplifications are frequent in cancer, this principle has the potential to expand target discovery in oncology. This article is featured in Selected Articles from This Issue, p. 384.


Asunto(s)
Neoplasias , Oncogenes , Humanos , Neoplasias/genética , Oncología Médica , Muerte Celular , Diana Mecanicista del Complejo 1 de la Rapamicina/genética
2.
Cell Genom ; 3(10): 100402, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37868040

RESUMEN

Neuroblastoma is a pediatric solid tumor characterized by strong clinical heterogeneity. Although clinical risk-defining genomic alterations exist in neuroblastomas, the mutational processes involved in their generation remain largely unclear. By examining the topography and mutational signatures derived from all variant classes, we identified co-occurring mutational footprints, which we termed mutational scenarios. We demonstrate that clinical neuroblastoma heterogeneity is associated with differences in the mutational processes driving these scenarios, linking risk-defining pathognomonic variants to distinct molecular processes. Whereas high-risk MYCN-amplified neuroblastomas were characterized by signs of replication slippage and stress, homologous recombination-associated signatures defined high-risk non-MYCN-amplified patients. Non-high-risk neuroblastomas were marked by footprints of chromosome mis-segregation and TOP1 mutational activity. Furthermore, analysis of subclonal mutations uncovered differential activity of these processes through neuroblastoma evolution. Thus, clinical heterogeneity of neuroblastoma patients can be linked to differences in the mutational processes that are active in their tumors.

3.
Nat Commun ; 14(1): 3936, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402719

RESUMEN

Circular RNAs (circRNAs) are a regulatory RNA class. While cancer-driving functions have been identified for single circRNAs, how they modulate gene expression in cancer is not well understood. We investigate circRNA expression in the pediatric malignancy, neuroblastoma, through deep whole-transcriptome sequencing in 104 primary neuroblastomas covering all risk groups. We demonstrate that MYCN amplification, which defines a subset of high-risk cases, causes globally suppressed circRNA biogenesis directly dependent on the DHX9 RNA helicase. We detect similar mechanisms in shaping circRNA expression in the pediatric cancer medulloblastoma implying a general MYCN effect. Comparisons to other cancers identify 25 circRNAs that are specifically upregulated in neuroblastoma, including circARID1A. Transcribed from the ARID1A tumor suppressor gene, circARID1A promotes cell growth and survival, mediated by direct interaction with the KHSRP RNA-binding protein. Our study highlights the importance of MYCN regulating circRNAs in cancer and identifies molecular mechanisms, which explain their contribution to neuroblastoma pathogenesis.


Asunto(s)
Neuroblastoma , ARN Circular , Niño , Humanos , ARN Circular/genética , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Línea Celular Tumoral , ARN/genética , ARN/metabolismo , Neuroblastoma/metabolismo , Regulación Neoplásica de la Expresión Génica
4.
bioRxiv ; 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37163102

RESUMEN

DNA transposable elements and transposase-derived genes are present in most living organisms, including vertebrates, but their function is largely unknown. PiggyBac Transposable Element Derived 5 (PGBD5) is an evolutionarily conserved vertebrate DNA transposase-derived gene with retained nuclease activity in cells. Vertebrate brain development is known to be associated with prominent neuronal cell death and DNA breaks, but their causes and functions are not well understood. Here, we show that PGBD5 contributes to normal brain development in mice and humans, where its deficiency causes disorder of intellectual disability, movement and seizures. In mice, Pgbd5 is required for the developmental induction of post-mitotic DNA breaks and recurrent somatic genome rearrangements in neurons. Together, these studies nominate PGBD5 as the long-hypothesized neuronal DNA nuclease required for brain function in mammals.

5.
Nat Genet ; 55(5): 880-890, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37142849

RESUMEN

Extrachromosomal DNAs (ecDNAs) are common in cancer, but many questions about their origin, structural dynamics and impact on intratumor heterogeneity are still unresolved. Here we describe single-cell extrachromosomal circular DNA and transcriptome sequencing (scEC&T-seq), a method for parallel sequencing of circular DNAs and full-length mRNA from single cells. By applying scEC&T-seq to cancer cells, we describe intercellular differences in ecDNA content while investigating their structural heterogeneity and transcriptional impact. Oncogene-containing ecDNAs were clonally present in cancer cells and drove intercellular oncogene expression differences. In contrast, other small circular DNAs were exclusive to individual cells, indicating differences in their selection and propagation. Intercellular differences in ecDNA structure pointed to circular recombination as a mechanism of ecDNA evolution. These results demonstrate scEC&T-seq as an approach to systematically characterize both small and large circular DNA in cancer cells, which will facilitate the analysis of these DNA elements in cancer and beyond.


Asunto(s)
Neoplasias , Transcriptoma , Humanos , Transcriptoma/genética , ADN , Neoplasias/genética , Oncogenes , ADN Circular/genética
6.
Mol Cancer ; 21(1): 126, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689207

RESUMEN

BACKGROUND: Development of resistance to targeted therapies has tempered initial optimism that precision oncology would improve poor outcomes for cancer patients. Resistance mechanisms, however, can also confer new resistance-specific vulnerabilities, termed collateral sensitivities. Here we investigated anaplastic lymphoma kinase (ALK) inhibitor resistance in neuroblastoma, a childhood cancer frequently affected by activating ALK alterations. METHODS: Genome-wide forward genetic CRISPR-Cas9 based screens were performed to identify genes associated with ALK inhibitor resistance in neuroblastoma cell lines. Furthermore, the neuroblastoma cell line NBLW-R was rendered resistant by continuous exposure to ALK inhibitors. Genes identified to be associated with ALK inhibitor resistance were further investigated by generating suitable cell line models. In addition, tumor and liquid biopsy samples of four patients with ALK-mutated neuroblastomas before ALK inhibitor treatment and during tumor progression under treatment were genomically profiled. RESULTS: Both genome-wide CRISPR-Cas9-based screens and preclinical spontaneous ALKi resistance models identified NF1 loss and activating NRASQ61K mutations to confer resistance to chemically diverse ALKi. Moreover, human neuroblastomas recurrently developed de novo loss of NF1 and activating RAS mutations after ALKi treatment, leading to therapy resistance. Pathway-specific perturbations confirmed that NF1 loss and activating RAS mutations lead to RAS-MAPK signaling even in the presence of ALKi. Intriguingly, NF1 loss rendered neuroblastoma cells hypersensitive to MEK inhibition. CONCLUSIONS: Our results provide a clinically relevant mechanistic model of ALKi resistance in neuroblastoma and highlight new clinically actionable collateral sensitivities in resistant cells.


Asunto(s)
Neuroblastoma , Medicina de Precisión , Quinasa de Linfoma Anaplásico/genética , Línea Celular Tumoral , Niño , Humanos , Mutación , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal
7.
J Pers Med ; 11(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34442335

RESUMEN

For many years, the risk-based therapy stratification of children with neuroblastoma has relied on clinical and molecular covariates. In recent years, genome analysis has revealed further alterations defining risk, tumor biology, and therapeutic targets. The implementation of a robust and scalable method for analyzing traditional and new molecular markers in routine diagnostics is an urgent clinical need. Here, we investigated targeted panel sequencing as a diagnostic approach to analyze all relevant genomic neuroblastoma risk markers in one assay. Our "neuroblastoma hybrid capture sequencing panel" (NB-HCSP) assay employs a technology for the high-coverage sequencing (>1000×) of 55 selected genes and neuroblastoma-relevant genomic regions, which allows for the detection of single nucleotide changes, structural rearrangements, and copy number alterations. We validated our assay by analyzing 15 neuroblastoma cell lines and a cohort of 20 neuroblastomas, for which reference routine diagnostic data and genome sequencing data were available. We observed a high concordance for risk markers identified by the NB-HSCP assay, clinical routine diagnostics, and genome sequencing. Subsequently, we demonstrated clinical applicability of the NB-HCSP assay by analyzing routine clinical samples. We conclude that the NB-HCSP assay may be implemented into routine diagnostics as a single assay that covers all essential covariates for initial neuroblastoma classification, extended risk stratification, and targeted therapy selection.

8.
Nat Commun ; 11(1): 5823, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199677

RESUMEN

MYCN amplification drives one in six cases of neuroblastoma. The supernumerary gene copies are commonly found on highly rearranged, extrachromosomal circular DNA (ecDNA). The exact amplicon structure has not been described thus far and the functional relevance of its rearrangements is unknown. Here, we analyze the MYCN amplicon structure using short-read and Nanopore sequencing and its chromatin landscape using ChIP-seq, ATAC-seq and Hi-C. This reveals two distinct classes of amplicons which explain the regulatory requirements for MYCN overexpression. The first class always co-amplifies a proximal enhancer driven by the noradrenergic core regulatory circuit (CRC). The second class of MYCN amplicons is characterized by high structural complexity, lacks key local enhancers, and instead contains distal chromosomal fragments harboring CRC-driven enhancers. Thus, ectopic enhancer hijacking can compensate for the loss of local gene regulatory elements and explains a large component of the structural diversity observed in MYCN amplification.


Asunto(s)
Cromosomas Humanos/genética , Elementos de Facilitación Genéticos/genética , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Acetilación , Secuencia de Bases , Línea Celular Tumoral , Metilación de ADN/genética , ADN Circular/genética , Epigénesis Genética , Histonas/metabolismo , Humanos , Estimación de Kaplan-Meier , Lisina/metabolismo , Secuenciación de Nanoporos
11.
Nat Genet ; 52(1): 29-34, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31844324

RESUMEN

Extrachromosomal circularization of DNA is an important genomic feature in cancer. However, the structure, composition and genome-wide frequency of extrachromosomal circular DNA have not yet been profiled extensively. Here, we combine genomic and transcriptomic approaches to describe the landscape of extrachromosomal circular DNA in neuroblastoma, a tumor arising in childhood from primitive cells of the sympathetic nervous system. Our analysis identifies and characterizes a wide catalog of somatically acquired and undescribed extrachromosomal circular DNAs. Moreover, we find that extrachromosomal circular DNAs are an unanticipated major source of somatic rearrangements, contributing to oncogenic remodeling through chimeric circularization and reintegration of circular DNA into the linear genome. Cancer-causing lesions can emerge out of circle-derived rearrangements and are associated with adverse clinical outcome. It is highly probable that circle-derived rearrangements represent an ongoing mutagenic process. Thus, extrachromosomal circular DNAs represent a multihit mutagenic process, with important functional and clinical implications for the origins of genomic remodeling in cancer.


Asunto(s)
Carcinogénesis/patología , ADN Circular/genética , Herencia Extracromosómica/genética , Reordenamiento Génico , Genoma Humano , Neuroblastoma/patología , Oncogenes/genética , Recombinación Genética , Humanos , Neuroblastoma/genética , Células Tumorales Cultivadas
12.
Nat Commun ; 9(1): 2162, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29849136

RESUMEN

In the originally published version of this Article, the affiliation details for Santi González, Jian'an Luan and Claudia Langenberg were inadvertently omitted. Santi González should have been affiliated with 'Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, 08034 Barcelona, Spain', and Jian'an Luan and Claudia Langenberg should have been affiliated with 'MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK'. Furthermore, the abstract contained an error in the SNP ID for the rare variant in chromosome Xq23, which was incorrectly given as rs146662057 and should have been rs146662075. These errors have now been corrected in both the PDF and HTML versions of the Article.

13.
Nat Commun ; 9(1): 321, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29358691

RESUMEN

The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2 diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we identify seven novel associated regions, five driven by common variants (LYPLAL1, NEUROG3, CAMKK2, ABO, and GIP genes), one by a low-frequency (EHMT2), and one driven by a rare variant in chromosome Xq23, rs146662057, associated with a twofold increased risk for T2D in males. rs146662057 is located within an active enhancer associated with the expression of Angiotensin II Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits allelic specific activity in muscle cells. Beyond providing insights into the genetics and pathophysiology of T2D, these results also underscore the value of reanalyzing publicly available data using novel genetic resources and analytical approaches.


Asunto(s)
Cromosomas Humanos X/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Alelos , Redes Reguladoras de Genes/genética , Genotipo , Humanos , Resistencia a la Insulina/genética , Masculino , Modelos Genéticos , Factores de Riesgo
15.
Nat Genet ; 49(7): 1005-1014, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28504702

RESUMEN

Genomic rearrangements are a hallmark of human cancers. Here, we identify the piggyBac transposable element derived 5 (PGBD5) gene as encoding an active DNA transposase expressed in the majority of childhood solid tumors, including lethal rhabdoid tumors. Using assembly-based whole-genome DNA sequencing, we found previously undefined genomic rearrangements in human rhabdoid tumors. These rearrangements involved PGBD5-specific signal (PSS) sequences at their breakpoints and recurrently inactivated tumor-suppressor genes. PGBD5 was physically associated with genomic PSS sequences that were also sufficient to mediate PGBD5-induced DNA rearrangements in rhabdoid tumor cells. Ectopic expression of PGBD5 in primary immortalized human cells was sufficient to promote cell transformation in vivo. This activity required specific catalytic residues in the PGBD5 transposase domain as well as end-joining DNA repair and induced structural rearrangements with PSS breakpoints. These results define PGBD5 as an oncogenic mutator and provide a plausible mechanism for site-specific DNA rearrangements in childhood and adult solid tumors.


Asunto(s)
Transformación Celular Neoplásica/genética , Tumor Rabdoide/genética , Transposasas/fisiología , Adulto , Animales , Dominio Catalítico , Línea Celular , Niño , Preescolar , Aberraciones Cromosómicas , Puntos de Rotura del Cromosoma , Reparación del ADN por Unión de Extremidades/genética , ADN de Neoplasias/genética , Reordenamiento Génico/genética , Genes Supresores de Tumor , Humanos , Lactante , Ratones , Ratones Desnudos , Mutagénesis Sitio-Dirigida , Interferencia de ARN , Proteínas Recombinantes/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Secuencias Repetidas Terminales/genética , Transposasas/química , Transposasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA