Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.044
Filtrar
1.
Antimicrob Agents Chemother ; : e0161923, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712935

RESUMEN

We used whole-genome sequencing to analyze a collection of 35 fluconazole-resistant and 7 susceptible Candida parapsilosis isolates together with coverage analysis and GWAS techniques to identify new mechanisms of fluconazole resistance. Phylogenetic analysis shows that although the collection is diverse, two persistent clinical lineages were identified. We identified copy number variation (CNV) of two genes, ERG11 and CDR1B, in resistant isolates. Two strains have a CNV at the ERG11 locus; the entire ORF is amplified in one, and only the promoter region is amplified in the other. We show that the annotated telomeric gene CDR1B is actually an artifactual in silico fusion of two highly similar neighboring CDR genes due to an assembly error in the C. parapsilosis CDC317 reference genome. We report highly variable copy numbers of the CDR1B region across the collection. Several strains have increased the expansion of the two genes into a tandem array of new chimeric genes. Other strains have experienced a deletion between the two genes creating a single gene with a reciprocal chimerism. We find translocations, duplications, and gene conversion across the CDR gene family in the C. parapsilosis species complex, showing that it is a highly dynamic family.

2.
Nat Commun ; 15(1): 4261, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769341

RESUMEN

Triazoles, the most widely used class of antifungal drugs, inhibit the biosynthesis of ergosterol, a crucial component of the fungal plasma membrane. Inhibition of a separate ergosterol biosynthetic step, catalyzed by the sterol C-24 methyltransferase Erg6, reduces the virulence of pathogenic yeasts, but its effects on filamentous fungal pathogens like Aspergillus fumigatus remain unexplored. Here, we show that the lipid droplet-associated enzyme Erg6 is essential for the viability of A. fumigatus and other Aspergillus species, including A. lentulus, A. terreus, and A. nidulans. Downregulation of erg6 causes loss of sterol-rich membrane domains required for apical extension of hyphae, as well as altered sterol profiles consistent with the Erg6 enzyme functioning upstream of the triazole drug target, Cyp51A/Cyp51B. Unexpectedly, erg6-repressed strains display wild-type susceptibility against the ergosterol-active triazole and polyene antifungals. Finally, we show that erg6 repression results in significant reduction in mortality in a murine model of invasive aspergillosis. Taken together with recent studies, our work supports Erg6 as a potentially pan-fungal drug target.


Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus , Ergosterol , Proteínas Fúngicas , Metiltransferasas , Triazoles , Animales , Metiltransferasas/metabolismo , Metiltransferasas/genética , Antifúngicos/farmacología , Aspergillus/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ratones , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Ergosterol/metabolismo , Ergosterol/biosíntesis , Triazoles/farmacología , Regulación Fúngica de la Expresión Génica , Aspergillus fumigatus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/metabolismo , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Hifa/genética , Hifa/metabolismo , Femenino , Pruebas de Sensibilidad Microbiana , Virulencia/genética
3.
Nat Commun ; 15(1): 3642, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684680

RESUMEN

Triazole antifungals function as ergosterol biosynthesis inhibitors and are frontline therapy for invasive fungal infections, such as invasive aspergillosis. The primary mechanism of action of triazoles is through the specific inhibition of a cytochrome P450 14-α-sterol demethylase enzyme, Cyp51A/B, resulting in depletion of cellular ergosterol. Here, we uncover a clinically relevant secondary mechanism of action for triazoles within the ergosterol biosynthesis pathway. We provide evidence that triazole-mediated inhibition of Cyp51A/B activity generates sterol intermediate perturbations that are likely decoded by the sterol sensing functions of HMG-CoA reductase and Insulin-Induced Gene orthologs as increased pathway activity. This, in turn, results in negative feedback regulation of HMG-CoA reductase, the rate-limiting step of sterol biosynthesis. We also provide evidence that HMG-CoA reductase sterol sensing domain mutations previously identified as generating resistance in clinical isolates of Aspergillus fumigatus partially disrupt this triazole-induced feedback. Therefore, our data point to a secondary mechanism of action for the triazoles: induction of HMG-CoA reductase negative feedback for downregulation of ergosterol biosynthesis pathway activity. Abrogation of this feedback through acquired mutations in the HMG-CoA reductase sterol sensing domain diminishes triazole antifungal activity against fungal pathogens and underpins HMG-CoA reductase-mediated resistance.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Ergosterol , Proteínas Fúngicas , Hidroximetilglutaril-CoA Reductasas , Triazoles , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/genética , Antifúngicos/farmacología , Triazoles/farmacología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ergosterol/metabolismo , Ergosterol/biosíntesis , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Farmacorresistencia Fúngica/genética , Farmacorresistencia Fúngica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Pruebas de Sensibilidad Microbiana , Esterol 14-Desmetilasa/metabolismo , Esterol 14-Desmetilasa/genética , Humanos , Mutación
4.
Neuroimage Clin ; 42: 103590, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38513535

RESUMEN

BACKGROUND: Apical ground-glass opacification (GGO) identified on CT angiography (CTA) performed for suspected acute stroke was developed in 2020 as a coronavirus-disease-2019 (COVID-19) diagnostic and prognostic biomarker in a retrospective study during the first wave of COVID-19. OBJECTIVE: To prospectively validate whether GGO on CTA performed for suspected acute stroke is a reliable COVID-19 diagnostic and prognostic biomarker and whether it is reliable for COVID-19 vaccinated patients. METHODS: In this prospective, pragmatic, national, multi-center validation study performed at 13 sites, we captured study data consecutively in patients undergoing CTA for suspected acute stroke from January-March 2021. Demographic and clinical features associated with stroke and COVID-19 were incorporated. The primary outcome was the likelihood of reverse-transcriptase-polymerase-chain-reaction swab-test-confirmed COVID-19 using the GGO biomarker. Secondary outcomes investigated were functional status at discharge and survival analyses at 30 and 90 days. Univariate and multivariable statistical analyses were employed. RESULTS: CTAs from 1,111 patients were analyzed, with apical GGO identified in 8.5 % during a period of high COVID-19 prevalence. GGO showed good inter-rater reliability (Fleiss κ = 0.77); and high COVID-19 specificity (93.7 %, 91.8-95.2) and negative predictive value (NPV; 97.8 %, 96.5-98.6). In subgroup analysis of vaccinated patients, GGO remained a good diagnostic biomarker (specificity 93.1 %, 89.8-95.5; NPV 99.7 %, 98.3-100.0). Patients with COVID-19 were more likely to have higher stroke score (NIHSS (mean +/- SD) 6.9 +/- 6.9, COVID-19 negative, 9.7 +/- 9.0, COVID-19 positive; p = 0.01), carotid occlusions (6.2 % negative, 14.9 % positive; p = 0.02), and larger infarcts on presentation CT (ASPECTS 9.4 +/- 1.5, COVID-19 negative, 8.6 +/- 2.4, COVID-19 positive; p = 0.00). After multivariable logistic regression, GGO (odds ratio 15.7, 6.2-40.1), myalgia (8.9, 2.1-38.2) and higher core body temperature (1.9, 1.1-3.2) were independent COVID-19 predictors. GGO was associated with worse functional outcome on discharge and worse survival after univariate analysis. However, after adjustment for factors including stroke severity, GGO was not independently predictive of functional outcome or mortality. CONCLUSION: Apical GGO on CTA performed for patients with suspected acute stroke is a reliable diagnostic biomarker for COVID-19, which in combination with clinical features may be useful in COVID-19 triage.

5.
Tech Coloproctol ; 28(1): 7, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079014

RESUMEN

BACKGROUND: First described by Parks and Nicholls in 1978, the ileal pouch-anal anastomosis (IPAA) has revolutionized the treatment of mucosal ulcerative colitis (MUC) and familial adenomatous polyposis (FAP). IPAA is fraught with complications, one of which is pouch-vaginal fistulas (PVF), a rare but challenging complication noted in 3.9-15% of female patients. Surgical treatment success approximates 50%. Gracilis muscle interposition (GMI) is a promising technique that has shown good results with other types of perineal fistulas. We present the results from our institution and a comprehensive literature review. METHODS: A retrospective observational study including all patients with a PVF treated with GMI at our institution from December 2018-January 2000. Primary outcome was complete healing after ileostomy closure. RESULTS: Nine patients were included. Eight of nine IPAAs (88.9%) were performed for MUC, and one for FAP. A subsequent diagnosis of Crohn's disease was made in five patients. Initial success occurred in two patients (22.2%), one patient was lost to follow-up and seven patients, after further procedures, ultimately achieved healing (77.8%). Four of five patients with Crohn's achieved complete healing (80%). CONCLUSION: Surgical healing rates quoted in the literature for PVFs are approximately 50%. The initial healing rate was 22.2% and increased to 77.8% after subsequent surgeries, while it was 80% in patients with Crohn's disease. Given this, gracilis muscle interposition may have a role in the treatment of pouch-vaginal fistulas.


Asunto(s)
Poliposis Adenomatosa del Colon , Colitis Ulcerosa , Reservorios Cólicos , Enfermedad de Crohn , Músculo Grácil , Proctocolectomía Restauradora , Fístula Vaginal , Humanos , Femenino , Estudios de Cohortes , Enfermedad de Crohn/complicaciones , Reservorios Cólicos/efectos adversos , Recurrencia Local de Neoplasia/cirugía , Proctocolectomía Restauradora/efectos adversos , Colitis Ulcerosa/cirugía , Colitis Ulcerosa/complicaciones , Fístula Vaginal/etiología , Fístula Vaginal/cirugía , Resultado del Tratamiento , Estudios Retrospectivos , Poliposis Adenomatosa del Colon/cirugía , Estudios Observacionales como Asunto
6.
Nat Commun ; 14(1): 6222, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37798294

RESUMEN

Natural variability in menstrual cycle length, coupled with rapid changes in endometrial gene expression, makes it difficult to accurately define and compare different stages of the endometrial cycle. Here we develop and validate a method for precisely determining endometrial cycle stage based on global gene expression. Our 'molecular staging model' reveals significant and remarkably synchronised daily changes in expression for over 3400 endometrial genes throughout the cycle, with the most dramatic changes occurring during the secretory phase. Our study significantly extends existing data on the endometrial transcriptome, and for the first time enables identification of differentially expressed endometrial genes with increasing age and different ethnicities. It also allows reinterpretation of all endometrial RNA-seq and array data that has been published to date. Our molecular staging model will significantly advance understanding of endometrial-related disorders that affect nearly all women at some stage of their lives, such as heavy menstrual bleeding, endometriosis, adenomyosis, and recurrent implantation failure.


Asunto(s)
Endometrio , Enfermedades Uterinas , Femenino , Humanos , Endometrio/metabolismo , Ciclo Menstrual/genética , Ciclo Menstrual/metabolismo , Enfermedades Uterinas/metabolismo , Transcriptoma , Biopsia
7.
Clin Microbiol Infect ; 29(12): 1602.e1-1602.e7, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37666448

RESUMEN

OBJECTIVES: The aim of this study was to determine how mutations in CpERG11 and CpTAC1 contribute to fluconazole resistance in a collection of clinical isolates. METHODS: Sequences of CpERG11 and CpTAC1 were determined for 35 resistant Candida parapsilosis clinical isolates. A plasmid-based CRISPR-Cas9 system was used to introduce mutations leading to amino acid substitution in CpTac1 and CpErg11. Triazole susceptibility was determined by broth microdilution and E-test. Differential expression of genes mediated by CpTAC1 mutation was determined by RNA sequencing, and relative expression of individual transporter genes was assessed with RT-qPCR. RESULTS: Six isolates carried a mutation in CpTAC1 in combination with the CpERG11 mutation, leading to the CpErg11Y132F substitution. When introduced into susceptible isolates, this CpERG11 mutation led to a 4- to 8-fold increase in fluconazole minimum inhibitory concentrations (MIC; 0.125 µg/mL vs. 0.5 µg/mL, 0.125 µg/mL vs. 0.5 µg/mL, and 0.5 µg/mL vs. 4 µg/mL). When introduced into a susceptible isolate, the CpTAC1 mutation leading to the G650E substitution resulted in an 8-fold increase in fluconazole MIC (0.25 µg/mL vs. 2 µg/mL), whereas correction of this mutation in resistant isolates led to a 16-fold reduction in MIC (32 µg/mL vs. 2 µg/mL). CpCDR1, CpCDR1B, and CpCDR1C were overexpressed in the presence CpTac1G650E. Disruption of these genes in combination resulted in a 4-fold reduction in fluconazole MIC (32 µg/mL vs. 8 µg/mL). DISCUSSION: These results define the specific contribution made by the Y132F substitution in CpERG11 and demonstrate a role for activating mutations in CpTAC1 in triazole resistance in C. parapsilosis.


Asunto(s)
Antifúngicos , Fluconazol , Humanos , Antifúngicos/farmacología , Fluconazol/farmacología , Candida parapsilosis/genética , Triazoles/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutación , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana
8.
bioRxiv ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37609350

RESUMEN

Ergosterol is a critical component of fungal plasma membranes. Although many currently available antifungal compounds target the ergosterol biosynthesis pathway for antifungal effect, current knowledge regarding ergosterol synthesis remains incomplete for filamentous fungal pathogens like Aspergillus fumigatus. Here, we show for the first time that the lipid droplet-associated sterol C-24 methyltransferase, Erg6, is essential for A. fumigatus viability. We further show that this essentiality extends to additional Aspergillus species, including A. lentulus, A. terreus, and A. nidulans. Neither the overexpression of a putative erg6 paralog, smt1, nor the exogenous addition of ergosterol could rescue erg6 deficiency. Importantly, Erg6 downregulation results in a dramatic decrease in ergosterol and accumulation in lanosterol and is further characterized by diminished sterol-rich plasma membrane domains (SRDs) at hyphal tips. Unexpectedly, erg6 repressed strains demonstrate wild-type susceptibility against the ergosterol-active triazole and polyene antifungals. Finally, repressing erg6 expression reduced fungal burden accumulation in a murine model of invasive aspergillosis. Taken together, our studies suggest that Erg6, which shows little homology to mammalian proteins, is potentially an attractive antifungal drug target for therapy of Aspergillus infections.

9.
Microbiol Spectr ; 11(3): e0518822, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37140376

RESUMEN

Aspergillus fumigatus is a ubiquitous environmental mold that can cause severe disease in immunocompromised patients and chronic disease in individuals with underlying lung conditions. Triazoles are the most widely used class of antifungal drugs to treat A. fumigatus infections, but their use in the clinic is threatened by the emergence of triazole-resistant isolates worldwide, reinforcing the need for a better understanding of resistance mechanisms. The predominant mechanisms of A. fumigatus triazole resistance involve mutations affecting the promoter region or coding sequence of the target enzyme of the triazoles, Cyp51A. However, triazole-resistant isolates without cyp51A-associated mutations are frequently identified. In this study, we investigate a pan-triazole-resistant clinical isolate, DI15-105, that simultaneously carries the mutations hapEP88L and hmg1F262del, with no mutations in cyp51A. Using a Cas9-mediated gene-editing system, hapEP88L and hmg1F262del mutations were reverted in DI15-105. Here, we show that the combination of these mutations accounts for pan-triazole resistance in DI15-105. To our knowledge, DI15-105 is the first clinical isolate reported to simultaneously carry mutations in hapE and hmg1 and only the second with the hapEP88L mutation. IMPORTANCE Triazole resistance is an important cause of treatment failure and high mortality rates for A. fumigatus human infections. Although Cyp51A-associated mutations are frequently identified as the cause of A. fumigatus triazole resistance, they do not explain the resistance phenotypes for several isolates. In this study, we demonstrate that hapE and hmg1 mutations additively contribute to pan-triazole resistance in an A. fumigatus clinical isolate lacking cyp51-associated mutations. Our results exemplify the importance of and the need for a better understanding of cyp51A-independent triazole resistance mechanisms.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Humanos , Aspergillus fumigatus/genética , Triazoles/farmacología , Proteínas Fúngicas/genética , Farmacorresistencia Fúngica/genética , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana
12.
J Plast Reconstr Aesthet Surg ; 76: 198-207, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36527901

RESUMEN

INTRODUCTION: Colorectal operations such as an extra-levator abdominoperineal (elAPE) excision for locally advanced or recurrent cancer create a significant perineal tissue deficit. Options for perineal reconstruction include bilateral pedicled gracilis muscle flaps (BPGMF). Fashioning the gracili into a 'weave' creates a muscular sling that supports pelvic contents and is a novel technique. Our series reports the outcomes of the BPGMF in 50 patients undergoing surgery for pelvic cancer. METHOD: This is a retrospective, single-centre study of patients undergoing reconstruction of perineal defects using BPGMF. All surgeries took place between January 2008 and February 2021. The primary outcome measured was perineal wound healing. The secondary outcomes measured were complications of surgical sites and length of hospital stay (short term), flap integrity on follow-up imaging and functional outcomes (long term). RESULTS: Fifty patients underwent perineal reconstruction using BPGMF (26 males). The median age was 62 years. The 30-day mortality was 2% (n = 1). The average follow-up period was 2 years. Complete perineal wound healing was 86% (42/49) at outpatient follow-up. Complication rates for the donor site and reconstructed site were 14% and 22%, respectively. Complications included infection (2% donor site, 12% perineum), haematoma (4% donor site), dehiscence (2% donor site, 4% perineum) and seroma (3% donor site, 2% perineum). CONCLUSION: BPGMF offers a reliable and technically simple muscle flap to reconstruct large perineal defects. The muscle flap integrity appears maintained on follow-up imaging despite a lack of flap monitoring tools. This cohort had minimal functional impairment following BPGMF.


Asunto(s)
Músculo Grácil , Procedimientos de Cirugía Plástica , Proctectomía , Neoplasias del Recto , Masculino , Humanos , Persona de Mediana Edad , Estudios de Seguimiento , Músculo Grácil/cirugía , Estudios Retrospectivos , Perineo/cirugía , Neoplasias del Recto/cirugía , Recurrencia Local de Neoplasia/cirugía , Proctectomía/efectos adversos , Proctectomía/métodos
13.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168157

RESUMEN

We used whole-genome sequencing to analyse a collection of 35 fluconazole resistant and 7 susceptible Candida parapsilosis isolates together with coverage analysis and GWAS techniques to identify new mechanisms of fluconazole resistance. Phylogenetic analysis shows that although the collection is diverse, two probable outbreak groups were identified. We identified copy number variation of two genes, ERG11 and CDR1B, in resistant isolates. Two strains have a CNV at the ERG11 locus; the entire ORF is amplified in one, and only the promoter region is amplified in the other. We show the annotated telomeric gene CDR1B is actually an artefactual in silico fusion of two highly similar neighbouring CDR genes due to an assembly error in the C. parapsilosis CDC317 reference genome. We report highly variable copy numbers of the CDR1B region across the collection. Several strains have increased expansion of the two genes into a tandem array of new chimeric genes. Other strains have experienced a deletion between the two genes creating a single gene with a reciprocal chimerism. We find translocations, duplications, and gene conversion across the CDR gene family in the C. parapsilosis species complex, showing that it is a highly dynamic family.

15.
Nat Chem Biol ; 18(11): 1170-1171, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36229682
16.
Curr Opin Microbiol ; 70: 102208, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36242897

RESUMEN

Fungal infections are responsible for significant morbidity and mortality. Resistance to the limited number of agents in the antifungal armamentarium among pathogenic fungi represents a growing public health threat. Particularly concerning is the emerging fungal pathogen Candida auris that frequently exhibits resistance to the triazole class of antifungals and amphotericin B, and for which isolates resistant to all of the major antifungal classes have been reported. In this brief review, we provide an overview of what is currently known about the molecular and genetic basis for antifungal resistance in this fungal pathogen.


Asunto(s)
Antifúngicos , Candida , Antifúngicos/farmacología , Candida auris , Farmacorresistencia Fúngica/genética , Anfotericina B/farmacología , Pruebas de Sensibilidad Microbiana
17.
Radiography (Lond) ; 28 Suppl 1: S93-S99, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36109264

RESUMEN

OBJECTIVES: The COVID-19 pandemic caused an unprecedented health crisis resulting in over 6 million deaths worldwide, a figure, which continues to grow. In addition to the excess mortality, there are individuals who recovered from the acute stages, but suffered long-term changes in their health post COVID-19, commonly referred to as long COVID. It is estimated there are currently 1.8 million long COVID sufferers by May 2022 in the UK alone. The aim of this narrative literature review is to explore the signs, symptoms and diagnosis of long COVID and the potential impact on imaging services. KEY FINDINGS: Long COVID is estimated to occur in 9.5% of those with two doses of vaccination and 14.6% if those with a single dose or no vaccination. Long COVID is defined by ongoing symptoms lasting for 12 or more weeks post acute infection. Symptoms are associated with reductions in the quality of daily life and may involve multisystem manifestations or present as a single symptom. CONCLUSION: The full impact of long COVID on imaging services is yet to be realised, but there is likely to be significant increased demand for imaging, particularly in CT for the assessment of lung disease. Educators will need to include aspects related to long COVID pathophysiology and imaging presentations in curricula, underpinned by the rapidly evolving evidence base. IMPLICATIONS FOR PRACTICE: Symptoms relating to long COVID are likely to become a common reason for imaging, with a particular burden on Computed Tomography services. Planning, education and updating protocols in line with a rapidly emerging evidence base is going to be essential.


Asunto(s)
COVID-19 , COVID-19/complicaciones , COVID-19/diagnóstico por imagen , Humanos , Pandemias , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
18.
Antimicrob Agents Chemother ; 66(7): e0028922, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35699442

RESUMEN

Candida parapsilosis is a common cause of invasive candidiasis worldwide and is the most commonly is7olated Candida species among pediatric and neonatal populations. Previous work has demonstrated that nonsynonymous mutations in the gene encoding the putative transcription factor CpMrr1 can influence fluconazole susceptibility. However, the direct contribution of these mutations and how they influence fluconazole resistance in clinical isolates are poorly understood. We identified 7 nonsynonymous CpMRR1 mutations in 12 isolates from within a collection of 35 fluconazole-resistant clinical isolates. The mutations leading to the A854V, R479K, and I283R substitutions were further examined and found to be activating mutations leading to increased fluconazole resistance. In addition to CpMDR1, we identified two other genes, one encoding a major facilitator superfamily (MFS) transporter (CpMDR1B, CPAR2_603010) and one encoding an ATP-binding cassette (ABC) transporter (CpCDR1B, CPAR2_304370), as being upregulated in isolates carrying CpMRR1-activating mutations. Overexpression of CpMDR1 in a susceptible strain and disruption in resistant clinical isolates that overexpress CpMDR1 had little to no effect on fluconazole susceptibility. Conversely, overexpression of either CpMDR1B or CpCDR1B increased resistance, and disruption in clinical isolates overexpressing these genes decreased fluconazole resistance. Our findings suggest that activating mutations in CpMRR1 represent important genetic determinants of fluconazole resistance in clinical isolates of C. parapsilosis, and unlike what is observed in Candida albicans, this is primarily driven by upregulation of both MFS (CpMdr1B) and ABC (CpCdr1B) transporters.


Asunto(s)
Candida parapsilosis , Farmacorresistencia Fúngica , Fluconazol , Transportadoras de Casetes de Unión a ATP/genética , Antifúngicos/farmacología , Candida albicans/genética , Candida albicans/metabolismo , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/metabolismo , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana
19.
Clin Microbiol Infect ; 28(6): 838-843, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34915074

RESUMEN

OBJECTIVE: Candida auris has emerged as a health-care-associated and multidrug-resistant fungal pathogen of great clinical concern. As many as 50% of C. auris clinical isolates are reported to be resistant to amphotericin B, but no mechanisms contributing to this resistance have been identified. Here we describe a clinical case in which high-level amphotericin B resistance was acquired in vivo during therapy and undertake molecular and genetic studies to identify and characterize the genetic determinant of resistance. METHODS: Whole-genome sequencing was performed on four C. auris isolates obtained from a single patient case. Cas9-mediated genetic manipulations were then used to generate mutant strains harbouring mutations of interest, and these strains were subsequently subjected to amphotericin B susceptibility testing and comprehensive sterol profiling. RESULTS: A novel mutation in the C. auris sterol-methyltransferase gene ERG6 was found to be associated with amphotericin B resistance, and this mutation alone conferred a >32-fold increase in amphotericin B resistance. Comprehensive sterol profiling revealed an abrogation of ergosterol biosynthesis and a corresponding accumulation of cholesta-type sterols in isolates and strains harbouring the clinically derived ERG6 mutation. CONCLUSIONS: Together these findings definitively demonstrate mutations in C. auris ERG6 as the first identified mechanism of clinical amphotericin B resistance in C. auris and represent a significant step forward in the understanding of antifungal resistance in this emerging public health threat.


Asunto(s)
Anfotericina B , Candida auris , Anfotericina B/farmacología , Anfotericina B/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Esteroles
20.
Microbiol Spectr ; 9(3): e0158521, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34878305

RESUMEN

Resistance to fluconazole is one of clinical characteristics most frequently challenging the treatment of invasive Candida auris infections, and is observed among >90% of all characterized clinical isolates. In this work, the native C. auris ERG11 allele in a previously characterized fluconazole-susceptible clinical isolate was replaced with the ERG11 alleles from three highly fluconazole-resistant clinical isolates (MIC ≥256 mg/L), encoding the amino acid substitutions VF125AL, Y132F, and K143R, using Cas9-ribonucleoprotein (RNP) mediated transformation system. Reciprocally, the ERG11WT allele from the same fluconazole-susceptible clinical isolate, lacking any resistance-associated mutation, was introduced into a previously characterized fluconazole-resistant clinical isolate, replacing the native ERG11K143R allele, using the same methods. The resulting collection of strains was subjected to comprehensive triazole susceptibility testing, and the direct impact each of these clinically-derived ERG11 mutations on triazole MIC was determined. Introduction of each of the three mutant ERG11 alleles was observed to increase fluconazole and voriconazole MIC by 8- to 16-fold. The MIC for the other clinically available triazoles were not significantly impacted by any ERG11 mutation. In the fluconazole-resistant clinical isolate background, correction of the K143R encoding mutation led to a similar 16-fold decrease in fluconazole MIC, and 8-fold decrease in voriconazole MIC, while the MIC of other triazoles were minimally changed. Taken together, these findings demonstrate that mutations in C. auris ERG11 significantly contribute to fluconazole and voriconazole resistance, but alone cannot explain the substantially elevated MIC observed among clinical isolates of C. auris. IMPORTANCE Candida auris is an emerging multidrug-resistant and health care-associated pathogen of urgent clinical concern. The triazoles are the most widely prescribed antifungal agents worldwide and are commonly utilized for the treatment of invasive Candida infections. Greater than 90% of all C. auris clinical isolates are observed to be resistant to fluconazole, and nearly all fluconazole-resistant isolates of C. auris are found to have one of three mutations (encoding VF125AL, Y132F, or K143R) in the gene encoding the target of the triazoles, ERG11. However, the direct contribution of these mutations in ERG11 to fluconazole resistance and the impact these mutations may have the susceptibility of the other triazoles remains unknown. The present study seeks to address this knowledge gap and potentially inform the future application the triazole antifungals for the treatment of infections caused by C. auris.


Asunto(s)
Antifúngicos/farmacología , Candida auris/efectos de los fármacos , Candida auris/genética , Farmacorresistencia Fúngica/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Mutación , Triazoles/farmacología , Sustitución de Aminoácidos , Candidiasis , Sistema Enzimático del Citocromo P-450/genética , Fluconazol , Proteínas Fúngicas/genética , Humanos , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA