Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Development ; 144(1): 139-150, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27913640

RESUMEN

Hox genes are known to specify motoneuron pools in the developing vertebrate spinal cord and to control motoneuronal targeting in several species. However, the mechanisms controlling axial diversification of muscle innervation patterns are still largely unknown. We present data showing that the Drosophila Hox gene Ultrabithorax (Ubx) acts in the late embryo to establish target specificity of ventrally projecting RP motoneurons. In abdominal segments A2 to A7, RP motoneurons innervate the ventrolateral muscles VL1-4, with VL1 and VL2 being innervated in a Wnt4-dependent manner. In Ubx mutants, these motoneurons fail to make correct contacts with muscle VL1, a phenotype partially resembling that of the Wnt4 mutant. We show that Ubx regulates expression of Wnt4 in muscle VL2 and that it interacts with the Wnt4 response pathway in the respective motoneurons. Ubx thus orchestrates the interaction between two cell types, muscles and motoneurons, to regulate establishment of the ventrolateral neuromuscular network.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster , Proteínas de Homeodominio/fisiología , Neuronas Motoras/fisiología , Músculos/embriología , Unión Neuromuscular/embriología , Unión Neuromuscular/genética , Factores de Transcripción/fisiología , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox/fisiología , Genes de Insecto , Morfogénesis/genética , Neuronas Motoras/metabolismo , Desarrollo de Músculos/genética , Músculos/metabolismo , Vía de Señalización Wnt
2.
Mech Dev ; 138 Pt 2: 177-189, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26299253

RESUMEN

Hox genes control divergent segment identities along the anteroposterior body axis of bilateral animals by regulating a large number of processes in a cell context-specific manner. How Hox proteins achieve this functional diversity is a long-standing question in developmental biology. In this study we investigate the role of alternative splicing in functional specificity of the Drosophila Hox gene Ultrabithorax (Ubx). We focus specifically on the embryonic central nervous system (CNS) and provide a description of temporal expression patterns of three major Ubx isoforms during development of this tissue. These analyses imply distinct functions for individual isoforms in different stages of neural development. We also examine the set of Ubx isoforms expressed in two isoform-specific Ubx mutant strains and analyze for the first time the effects of splicing defects on regional neural stem cell (neuroblast) identity. Our findings support the notion of specific isoforms having different effects in providing individual neuroblasts with positional identity along the anteroposterior body axis, as well as being involved in regulation of progeny cell fate.


Asunto(s)
Empalme Alternativo/genética , Sistema Nervioso Central/embriología , Proteínas de Drosophila/genética , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica/genética , Neurogénesis/genética , Animales , Drosophila/embriología , Genes Homeobox/genética , Genes de Insecto/genética , Proteínas de Homeodominio/genética , Isoformas de Proteínas/genética , Factores de Transcripción/genética
3.
Elife ; 42015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25869471

RESUMEN

Hox proteins are well-established developmental regulators that coordinate cell fate and morphogenesis throughout embryogenesis. In contrast, our knowledge of their specific molecular modes of action is limited to the interaction with few cofactors. Here, we show that Hox proteins are able to interact with a wide range of transcription factors in the live Drosophila embryo. In this context, specificity relies on a versatile usage of conserved short linear motifs (SLiMs), which, surprisingly, often restrains the interaction potential of Hox proteins. This novel buffering activity of SLiMs was observed in different tissues and found in Hox proteins from cnidarian to mouse species. Although these interactions remain to be analysed in the context of endogenous Hox regulatory activities, our observations challenge the traditional role assigned to SLiMs and provide an alternative concept to explain how Hox interactome specificity could be achieved during the embryonic development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Mapas de Interacción de Proteínas , Secuencias de Aminoácidos , Animales , Unión Competitiva , ADN/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero/metabolismo , Evolución Molecular , Fluorescencia , Proteínas Intrínsecamente Desordenadas/metabolismo , Ratones , Mutación/genética , Oligopéptidos/metabolismo , Especificidad de Órganos , Unión Proteica , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
4.
J Neurogenet ; 28(3-4): 171-80, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24913688

RESUMEN

Studies performed at the level of single, identified cells in the fruitfly Drosophila have decisively contributed to our understanding of the mechanisms underlying the development and function of the nervous system. This review highlights some of the work based on single-cell analyses in the embryonic/larval CNS that sheds light on the principles underlying formation and organization of an entire segmental unit and its divergence along the anterior/posterior body axis.


Asunto(s)
Tipificación del Cuerpo/genética , Sistema Nervioso Central/embriología , Proteínas de Drosophila/genética , Drosophila/genética , Genes Homeobox , Animales , Drosophila/embriología
5.
Development ; 141(10): 2046-56, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24803653

RESUMEN

The regulated head-to-tail expression of Hox genes provides a coordinate system for the activation of specific programmes of cell differentiation according to axial level. Recent work indicates that Hox expression can be regulated via RNA processing but the underlying mechanisms and biological significance of this form of regulation remain poorly understood. Here we explore these issues within the developing Drosophila central nervous system (CNS). We show that the pan-neural RNA-binding protein (RBP) ELAV (Hu antigen) regulates the RNA processing patterns of the Hox gene Ultrabithorax (Ubx) within the embryonic CNS. Using a combination of biochemical, genetic and imaging approaches we demonstrate that ELAV binds to discrete elements within Ubx RNAs and that its genetic removal reduces Ubx protein expression in the CNS leading to the respecification of cellular subroutines under Ubx control, thus defining for the first time a specific cellular role of ELAV within the developing CNS. Artificial provision of ELAV in glial cells (a cell type that lacks ELAV) promotes Ubx expression, suggesting that ELAV-dependent regulation might contribute to cell type-specific Hox expression patterns within the CNS. Finally, we note that expression of abdominal A and Abdominal B is reduced in elav mutant embryos, whereas other Hox genes (Antennapedia) are not affected. Based on these results and the evolutionary conservation of ELAV and Hox genes we propose that the modulation of Hox RNA processing by ELAV serves to adapt the morphogenesis of the CNS to axial level by regulating Hox expression and consequently activating local programmes of neural differentiation.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Proteínas ELAV/fisiología , Genes Homeobox , Sistema Nervioso/embriología , Procesamiento Postranscripcional del ARN , Animales , Secuencia de Bases , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Datos de Secuencia Molecular , Morfogénesis/genética , Sistema Nervioso/metabolismo , Neurogénesis/genética , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Development ; 140(17): 3552-64, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23903193

RESUMEN

The central nervous system of Drosophila melanogaster consists of fused segmental units (neuromeres), each generated by a characteristic number of neural stem cells (neuroblasts). In the embryo, thoracic and anterior abdominal neuromeres are almost equally sized and formed by repetitive sets of neuroblasts, whereas the terminal abdominal neuromeres are generated by significantly smaller populations of progenitor cells. Here we investigated the role of the Hox gene Abdominal-B in shaping the terminal neuromeres. We show that the regulatory isoform of Abdominal-B (Abd-B.r) not only confers abdominal fate to specific neuroblasts (e.g. NB6-4) and regulates programmed cell death of several progeny cells within certain neuroblast lineages (e.g. NB3-3) in parasegment 14, but also inhibits the formation of a specific set of neuroblasts in parasegment 15 (including NB7-3). We further show that Abd-B.r requires cooperation of the ParaHox gene caudal to unfold its full competence concerning neuroblast inhibition and specification. Thus, our findings demonstrate that combined action of Abdominal-B and caudal contributes to the size and composition of the terminal neuromeres by regulating both the number and lineages of specific neuroblasts.


Asunto(s)
Diferenciación Celular/fisiología , Sistema Nervioso Central/embriología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/fisiología , Cola (estructura animal)/embriología , Factores de Transcripción/metabolismo , Animales , Apoptosis/fisiología , Cartilla de ADN/genética , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hibridación in Situ , Microscopía Fluorescente
7.
Fly (Austin) ; 2(6): 316-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19077542

RESUMEN

In this article we highlight some of the recently accumulating evidence showing that Hox genes are involved at different steps during the development of neural cell lineages to control segmental patterning of the CNS. In addition to their well-known early role in establishing segmental identities, Hox genes act on neural stem cells and their progeny at various stages during embryonic and postembryonic development to control proliferation, cell fate and/or apoptosis in a segment-specific manner. This leads to differential shaping of serially homologous lineages and thus to structural diversification of segmental CNS units (neuromeres) in adaptation to their specific functional tasks in processing sensory information and generation of motor patterns.


Asunto(s)
Drosophila melanogaster/fisiología , Genes Homeobox/fisiología , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Drosophila melanogaster/citología , Drosophila melanogaster/embriología
8.
Development ; 135(20): 3435-45, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18799545

RESUMEN

The generation of morphological diversity among segmental units of the nervous system is crucial for correct matching of neurons with their targets and for formation of functional neuromuscular networks. However, the mechanisms leading to segment diversity remain largely unknown. We report here that the Hox genes Ultrabithorax (Ubx) and Antennapedia (Antp) regulate segment-specific survival of differentiated motoneurons in the ventral nerve cord of Drosophila embryos. We show that Ubx is required to activate segment-specific apoptosis in these cells, and that their survival depends on Antp. Expression of the Ubx protein is strongly upregulated in the motoneurons shortly before they undergo apoptosis, and our results indicate that this late upregulation is required to activate reaper-dependent cell death. We further demonstrate that Ubx executes this role by counteracting the function of Antp in promoting cell survival. Thus, two Hox genes contribute to segment patterning and diversity in the embryonic CNS by carrying out opposing roles in the survival of specific differentiated motoneurons.


Asunto(s)
Proteína con Homeodominio Antennapedia/fisiología , Apoptosis , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Proteínas de Drosophila/fisiología , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Factores de Transcripción/fisiología , Animales , Proteína con Homeodominio Antennapedia/genética , Proteína con Homeodominio Antennapedia/metabolismo , Diferenciación Celular , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Development ; 134(1): 105-16, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17164416

RESUMEN

Although programmed cell death (PCD) plays a crucial role throughout Drosophila CNS development, its pattern and incidence remain largely uninvestigated. We provide here a detailed analysis of the occurrence of PCD in the embryonic ventral nerve cord (VNC). We traced the spatio-temporal pattern of PCD and compared the appearance of, and total cell numbers in, thoracic and abdominal neuromeres of wild-type and PCD-deficient H99 mutant embryos. Furthermore, we have examined the clonal origin and fate of superfluous cells in H99 mutants by DiI labeling almost all neuroblasts, with special attention to segment-specific differences within the individually identified neuroblast lineages. Our data reveal that although PCD-deficient mutants appear morphologically well-structured, there is significant hyperplasia in the VNC. The majority of neuroblast lineages comprise superfluous cells, and a specific set of these lineages shows segment-specific characteristics. The superfluous cells can be specified as neurons with extended wild-type-like or abnormal axonal projections, but not as glia. The lineage data also provide indications towards the identities of neuroblasts that normally die in the late embryo and of those that become postembryonic and resume proliferation in the larva. Using cell-specific markers we were able to precisely identify some of the progeny cells, including the GW neuron, the U motoneurons and one of the RP motoneurons, all of which undergo segment-specific cell death. The data obtained in this analysis form the basis for further investigations into the mechanisms involved in the regulation of PCD and its role in segmental patterning in the embryonic CNS.


Asunto(s)
Apoptosis , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Drosophila melanogaster/embriología , Animales , Tipificación del Cuerpo , Recuento de Células , Linaje de la Célula , Células Clonales , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Interneuronas/citología , Mutación , Neuronas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA