Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Inherit Metab Dis ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979754

RESUMEN

Genetic disorders pose great challenges for affected individuals and their families, as they must cope with the irreversible nature of the disease and a life-long dependence on medical assistance and treatment. Children and adolescents dealing with Pompe disease (PD) often struggle to keep up with their peers in physical activities. To gain valuable insights into their subjective experiences and better understand their perception and coping related to daily challenges linked to their condition and treatment, the use of standardized questionnaires is crucial. This study introduces the novel PompeQoL 1.0 questionnaire for children and adolescents with PD, designed for comprehensive assessment of both disease-specific FDH and HRQoL through self- and proxy reports. Content validity was ensured through patients' and parents' involvement at the initial stages of development and in subsequent cognitive debriefing process. Participants found the questionnaire easy to understand, answerable, relevant, and comprehensive. Adjustments based on feedback from patients and their parents improved its utility as a patient- and observer-reported outcome measure. After careful item examination, 52 items were selected, demonstrating moderate to excellent test-retest reliability for most scales and initial evidence for satisfactory construct validity. The PompeQoL questionnaire stands as a valuable screening instrument for both clinical and research purposes. Future research should prioritize additional revisions and larger validation studies, focusing on testing the questionnaire in clinical practice and trials. Nevertheless, the PompeQoL 1.0 stands out as the first standardized measure providing insights into disease-specific FDH and HRQoL among children and adolescents with various forms of PD.

2.
Front Bioeng Biotechnol ; 12: 1310289, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419730

RESUMEN

Human organotypic bone models are an emerging technology that replicate bone physiology and mechanobiology for comprehensive in vitro experimentation over prolonged periods of time. Recently, we introduced a mineralized bone model based on 3D bioprinted cell-laden alginate-gelatin-graphene oxide hydrogels cultured under dynamic loading using commercially available human mesenchymal stem cells. In the present study, we created cell-laden scaffolds from primary human osteoblasts isolated from surgical waste material and investigated the effects of a previously reported optimal cell printing density (5 × 106 cells/mL bioink) vs. a higher physiological cell density (10 × 106 cells/mL bioink). We studied mineral formation, scaffold stiffness, and cell morphology over a 10-week period to determine culture conditions for primary human bone cells in this microenvironment. For analysis, the human bone-derived cell-laden scaffolds underwent multiscale assessment at specific timepoints. High cell viability was observed in both groups after bioprinting (>90%) and after 2 weeks of daily mechanical loading (>85%). Bioprinting at a higher cell density resulted in faster mineral formation rates, higher mineral densities and remarkably a 10-fold increase in stiffness compared to a modest 2-fold increase in the lower printing density group. In addition, physiological cell bioprinting densities positively impacted cell spreading and formation of dendritic interconnections. We conclude that our methodology of processing patient-specific human bone cells, subsequent biofabrication and dynamic culturing reliably affords mineralized cell-laden scaffolds. In the future, in vitro systems based on patient-derived cells could be applied to study the individual phenotype of bone disorders such as osteogenesis imperfecta and aid clinical decision making.

3.
Front Endocrinol (Lausanne) ; 14: 1195704, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305034

RESUMEN

Osteogenesis imperfecta (OI) is a heritable and chronically debilitating skeletal dysplasia. Patients with OI typically present with reduced bone mass, tendency for recurrent fractures, short stature and bowing deformities of the long bones. Mutations causative of OI have been identified in over 20 genes involved in collagen folding, posttranslational modification and processing, and in bone mineralization and osteoblast development. In 2016, we described the first X-linked recessive form of OI caused by MBTPS2 missense variants in patients with moderate to severe phenotypes. MBTPS2 encodes site-2 protease, a Golgi transmembrane protein that activates membrane-tethered transcription factors. These transcription factors regulate genes involved in lipid metabolism, bone and cartilage development, and ER stress response. The interpretation of genetic variants in MBTPS2 is complicated by the gene's pleiotropic properties; MBTPS2 variants can also cause the dermatological conditions Ichthyosis Follicularis, Atrichia and Photophobia (IFAP), Keratosis Follicularis Spinulosa Decalvans (KFSD) and Olmsted syndrome (OS) without skeletal abnormalities typical of OI. Using control and patient-derived fibroblasts, we previously identified gene expression signatures that distinguish MBTPS2-OI from MBTPS2-IFAP/KFSD and observed stronger suppression of genes involved in fatty acid metabolism in MBTPS2-OI than in MBTPS2-IFAP/KFSD; this was coupled with alterations in the relative abundance of fatty acids in MBTPS2-OI. Furthermore, we observed a reduction in collagen deposition in the extracellular matrix by MBTPS2-OI fibroblasts. Here, we extrapolate our observations in the molecular signature unique to MBTPS2-OI to infer the pathogenicity of a novel MBTPS2 c.516A>C (p.Glu172Asp) variant of unknown significance in a male proband. The pregnancy was terminated at gestational week 21 after ultrasound scans showed bowing of femurs and tibiae and shortening of long bones particularly of the lower extremity; these were further confirmed by autopsy. By performing transcriptional analyses, gas chromatography-tandem mass spectrometry-based quantification of fatty acids and immunocytochemistry on fibroblasts derived from the umbilical cord of the proband, we observed perturbations in fatty acid metabolism and collagen production similar to what we previously described in MBTPS2-OI. These findings support pathogenicity of the MBTPS2 variant p.Glu172Asp as OI-causative and highlights the value of extrapolating molecular signatures identified in multiomics studies to characterize novel genetic variants.


Asunto(s)
Osteogénesis Imperfecta , Masculino , Femenino , Embarazo , Humanos , Osteogénesis Imperfecta/genética , Virulencia , Colágeno/genética , Metabolismo de los Lípidos , Alopecia , Metaloendopeptidasas
4.
Orphanet J Rare Dis ; 18(1): 123, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226194

RESUMEN

BACKGROUND: Osteogenesis imperfecta (OI) is a group of rare inheritable disorders of connective tissue. The cardinal manifestations of OI are low bone mass and reduced bone mineral strength, leading to increased bone fragility and deformity that may lead to significant impairment in daily life. The phenotypic manifestations show a broad range of severity, ranging from mild or moderate to severe and lethal. The here presented meta-analysis aimed to analyze existing findings on quality of life (QoL) in children and adults with OI. METHODS: Nine databases were searched with predefined key words. The selection process was executed by two independent reviewers and was based on predetermined exclusion and inclusion criteria. The quality of each study was assessed using a risk of bias tool. Effect sizes were calculated as standardized mean differences. Between-study heterogeneity was calculated with the I2 statistic. RESULTS: Among the studies included two featured children and adolescents (N = 189), and four adults (N = 760). Children with OI had significantly lower QoL on the Pediatric quality of life inventory (PedsQL) with regards to the total score, emotional, school, and social functioning compared to controls and norms. The data was not sufficient to calculate differences regarding OI-subtypes. In the adult sample assessed with Short Form Health Survey Questionnaire, 12 (SF-12) and 36 items (SF-36), all OI types showed significantly lower QoL levels across all physical component subscales compared to norms. The same pattern was found for the mental component subscales namely vitality, social functioning, and emotional role functioning. The mental health subscale was significantly lower for OI type I, but not for type III and IV. All of the included studies exhibited a low risk of bias. CONCLUSIONS: QoL was significantly lower in children and adults with OI compared to norms and controls. Studies in adults comparing OI subtypes showed that the clinical severity of the phenotype is not related to worse mental health QoL. Future research is needed to examine QoL in children and adolescents in more sophisticated ways and to better understand the association between clinical severity of an OI-phenotype/severity and mental health in adults.


Asunto(s)
Osteogénesis Imperfecta , Humanos , Calidad de Vida , Bases de Datos Factuales , Emociones , Salud Mental , Enfermedades Raras
5.
Mol Genet Metab Rep ; 31: 100876, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35762020

RESUMEN

Background: Living with a non-acute (phenylketonuria) or acute (e.g. urea cycle disorders, organic acidurias) intoxication-type inborn error of metabolism (IT-IEM) can have a substantial impact on health-related quality of life (HrQoL) of paediatric patients and their families. Parents take primary responsibility for treatment monitoring and experience worry and fear about their child's health status. Quantitative evidence on parental psychological factors which may influence the HrQoL of patients with IT-IEM are sparse to non-existent. Methods: In this multicenter survey study 50 parents of IT-IEM patients (ages 5-19) assessed the severity of their child's disease, reported on caregiver burden, and proxy-rated their child's HrQoL. Additionally, 35 patient self-reports on HrQoL were obtained (n = 16 female patients, n = 19 male patients). Multiple linear regressions were conducted to examine the predictive power of child age, sex, medical diagnosis type (acute / non-acute), parental perceived disease severity and caregiver burden on patients' HrQoL. Mediation analyses were used to investigate the relation of caregiver burden and parental ratings of disease severity with patients' HrQoL. Results: Significant regression models for self-reported [F(5,34) = 10.752, p < .001, R 2 adj.. = 0.59] and parent proxy reported HrQoL [F(5,49) = 20.513, p < .001, R 2 adj.. = 0.67] emerged. High caregiver burden and perceived disease severity predicted significantly lower patient self- and proxy-reported HrQoL while type of diagnosis (acute versus non-acute) did not. Female sex predicted significantly lower self-reported HrQoL. High caregiver burden was the mediating factor between high perceived severity of the child's disease and lower proxy- by parent rated HrQoL. Conclusion: Detecting elevated burden of care and providing support for parents seems crucial to prevent adverse consequences for their children's HrQoL. Intervention studies are needed, to assess which support programs are most efficient.

6.
Genet Med ; 24(2): 439-453, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34906501

RESUMEN

PURPOSE: This study aimed to describe a multisystemic disorder featuring cardiovascular, facial, musculoskeletal, and cutaneous anomalies caused by heterozygous loss-of-function variants in TAB2. METHODS: Affected individuals were analyzed by next-generation technologies and genomic array. The presumed loss-of-function effect of identified variants was assessed by luciferase assay in cells transiently expressing TAB2 deleterious alleles. In available patients' fibroblasts, variant pathogenicity was further explored by immunoblot and osteoblast differentiation assays. The transcriptomic profile of fibroblasts was investigated by RNA sequencing. RESULTS: A total of 11 individuals from 8 families were heterozygotes for a novel TAB2 variant. In total, 7 variants were predicted to be null alleles and 1 was a missense change. An additional subject was heterozygous for a 52 kb microdeletion involving TAB2 exons 1 to 3. Luciferase assay indicated a decreased transcriptional activation mediated by NF-κB signaling for all point variants. Immunoblot analysis showed a reduction of TAK1 phosphorylation while osteoblast differentiation was impaired. Transcriptomic analysis identified deregulation of multiple pleiotropic pathways, such as TGFß-, Ras-MAPK-, and Wnt-signaling networks. CONCLUSION: Our data defined a novel disorder associated with loss-of-function or, more rarely, hypomorphic alleles in a restricted linker region of TAB2. The pleiotropic manifestations in this disorder partly recapitulate the 6q25.1 (TAB2) microdeletion syndrome and deserve the definition of cardio-facial-cutaneous-articular syndrome.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , FN-kappa B , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Exones/genética , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Fosforilación , Transducción de Señal
7.
Children (Basel) ; 8(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34438514

RESUMEN

(1) Background: Carpal tunnel syndrome (CTS), a compressive mononeuropathy of the median nerve at the wrist, is rare in childhood and occurs most frequently due to secondary causes. (2) Methods: Medical history, electrodiagnostic findings, and imaging data of patients with CTS from two pediatric neuromuscular centers were analyzed retrospectively. The etiology of CTS was investigated and compared with the literature. (3) Results: We report on a cohort of 38 CTS patients (n = 22 females, n = 29 bilateral, mean age at diagnosis 9.8 years). Electrodiagnostic studies of all patients revealed slowing of the antidromic sensory or orthodromic mixed nerve conduction velocities across the carpal tunnel or lack of the sensory nerve action potential and/or prolonged distal motor latencies. Median nerve ultrasound was diagnostic for CTS and confirmed tumorous and vascular malformations. Etiology was secondary in most patients (n = 29; 76%), and mucopolysaccharidosis was the most frequent underlying condition (n = 14; 37%). Idiopathic CTS was rare in this pediatric cohort (n = 9; 24%). (4) Conclusion: Since CTS in childhood is predominantly caused by an underlying disorder, a thorough evaluation and search for a causative condition is recommended in this age group.

8.
Front Genet ; 12: 662751, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093655

RESUMEN

Osteogenesis imperfecta (OI) is an inherited skeletal dysplasia characterized by low bone density, bone fragility and recurrent fractures. The characterization of its heterogeneous genetic basis has allowed the identification of novel players in bone development. In 2016, we described the first X-linked recessive form of OI caused by hemizygous MBTPS2 missense variants resulting in moderate to severe phenotypes. MBTPS2 encodes site-2 protease (S2P), which activates transcription factors involved in bone (OASIS) and cartilage development (BBF2H7), ER stress response (ATF6) and lipid metabolism (SREBP) via regulated intramembrane proteolysis. In times of ER stress or sterol deficiency, the aforementioned transcription factors are sequentially cleaved by site-1 protease (S1P) and S2P. Their N-terminal fragments shuttle to the nucleus to activate gene transcription. Intriguingly, missense mutations at other positions of MBTPS2 cause the dermatological spectrum condition Ichthyosis Follicularis, Atrichia and Photophobia (IFAP) and Keratosis Follicularis Spinulosa Decalvans (KFSD) without clinical overlap with OI despite the proximity of some of the pathogenic variants. To understand how single amino acid substitutions in S2P can lead to non-overlapping phenotypes, we aimed to compare the molecular features of MBTPS2-OI and MBTPS2-IFAP/KFSD, with the ultimate goal to unravel the pathomechanisms underlying MBTPS2-OI. RNA-sequencing-based transcriptome profiling of primary skin fibroblasts from healthy controls (n = 4), MBTPS2-OI (n = 3), and MBTPS2-IFAP/KFSD (n = 2) patients was performed to identify genes that are differentially expressed in MBTPS2-OI and MBTPS2-IFAP/KFSD individuals compared to controls. We observed that SREBP-dependent genes are more downregulated in OI than in IFAP/KFSD. This is coupled to alterations in the relative abundance of fatty acids in MBTPS2-OI fibroblasts in vitro, while no consistent alterations in the sterol profile were observed. Few OASIS-dependent genes are suppressed in MBTPS2-OI, while BBF2H7- and ATF6-dependent genes are comparable between OI and IFAP/KFSD patients and control fibroblasts. Importantly, we identified genes involved in cartilage physiology that are differentially expressed in MBTPS2-OI but not in MBTPS2-IFAP/KFSD fibroblasts. In conclusion, our data provide clues to how pathogenic MBTPS2 mutations cause skeletal deformities via altered fatty acid metabolism or cartilage development that may affect bone development, mineralization and endochondral ossification.

9.
JIMD Rep ; 57(1): 58-66, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33473341

RESUMEN

Glycogen storage diseases (GSDs) belong to the group of inborn errors of carbohydrate metabolism. Hepatic GSDs predominantly involve the liver and most present with hepatomegaly. Biochemically they show known disturbances in glucose and fatty acids metabolism, namely fasting hypoglycaemia and increased triglycerides. Additionally, increased biotinidase (BTD) enzyme activity has been shown to be associated with many GSD types, whereas the mechanism by which BTD enzyme activity is altered remains unknown so far. We aimed to delineate changes in gluconeogenesis and fatty acid synthesis, potentially explaining raised BTD enzyme activity, by using liver (specimens from 2 patients) and serum samples of GSD Ia and GSD IV patients. By expression analysis of genes involved in gluconeogenesis, we ascertained increased levels of phosphoenolpyruvate carboxykinase and fructose-1,6-biphosphatase, indicating an increased flux through the gluconeogenic pathway. Additionally, we found increased gene expression of the biotin-dependent pyruvate and acetyl-CoA carboxylases, providing substrate for gluconeogenesis and increased fatty acid synthesis. We also observed a significant linear correlation between BTD enzyme activity and triglyceride levels in a cohort of GSD Ia patients. The results of this pilot study suggest that enhancement of BTD activity might serve the purpose of providing extra cofactor to the carboxylase enzymes as an adjustment to disturbed glucose and fatty acid metabolism. Future studies involving a higher number of samples should aim at confirming the here proposed mechanism, which extends the application of BTD enzyme activity measurement beyond its diagnostic purpose in suspected GSD, and opens up possibilities for its use as a sensor for increased gluconeogenesis and fatty acid synthesis.

10.
Genes (Basel) ; 12(1)2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418956

RESUMEN

Coloboma and microphthalmia (C/M) are related congenital eye malformations, which can cause significant visual impairment. Molecular diagnosis is challenging as the genes associated to date with C/M account for only a small percentage of cases. Overall, the genetic cause remains unknown in up to 80% of patients. High throughput DNA sequencing technologies, including whole-exome sequencing (WES), are therefore a useful and efficient tool for genetic screening and identification of new mutations and novel genes in C/M. In this study, we analyzed the DNA of 19 patients with C/M from 15 unrelated families using singleton WES and data analysis for 307 genes of interest. We identified seven novel and one recurrent potentially disease-causing variants in CRIM1, CHD7, FAT1, PTCH1, PUF60, BRPF1, and TGFB2 in 47% of our families, three of which occurred de novo. The detection rate in patients with ocular and extraocular manifestations (67%) was higher than in patients with an isolated ocular phenotype (46%). Our study highlights the significant genetic heterogeneity in C/M cohorts and emphasizes the diagnostic power of WES for the screening of patients and families with C/M.


Asunto(s)
Coloboma/genética , Secuenciación del Exoma , Microftalmía/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Coloboma/diagnóstico , Variaciones en el Número de Copia de ADN , Femenino , Heterogeneidad Genética , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Tamizaje Masivo/métodos , Microftalmía/diagnóstico , Persona de Mediana Edad , Linaje , Adulto Joven
11.
BMC Cardiovasc Disord ; 20(1): 417, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32933483

RESUMEN

BACKGROUND: Ehlers-Danlos Syndrome (EDS) comprises a heterogeneous group of diseases characterized by joint hypermobility, connective tissue friability, and vascular fragility. Reliable prognostic factors predicting vascular disease progression (e.g. arterial aneurysms, dissections, and ruptures) in EDS patients are still missing. Recently, applanation tonometry derived augmentation index (AIx), an indirect marker of arterial stiffness, has shown to be positively associated with progression of aortic disease in Marfan syndrome. In this study, we assessed aortic AIx in patients with EDS and matched healthy controls. METHODS: We performed noninvasive applanation tonometry in 61 adults with EDS (43 women and 18 men aged 39.3 ± 14.6 years) and 61 age-, gender-, height-, and weight-matched healthy controls. Radial artery pulse waveforms were recorded and analyzed using the SphygmoCor System (AtCor Medical, Sydney, NSW, Australia). Calculated AIx was adjusted to a heart rate of 75/min. Groups were compared and association between AIx and EDS was determined by univariate and multivariate regression analysis. RESULTS: EDS patients were categorized in classical type EDS (34%), hypermobile type EDS (43%), vascular type EDS (5%), or remained unassignable (18%) due to overlapping features. EDS patients showed a significantly increased aortic AIx compared to healthy controls (22.8% ± 10.1 vs 14.8% ± 14.0, p < 0.001). EDS showed a positive association with AIx; independent of age, sex, height, blood pressure, medication, and pack years of smoking. CONCLUSIONS: Patients with EDS showed elevated AIx, indicating increased arterial stiffness when compared to healthy controls. Further investigations are needed in order to assess the prognostic value of increased AIx for cardiovascular outcomes in patients with EDS.


Asunto(s)
Síndrome de Ehlers-Danlos/diagnóstico , Análisis de la Onda del Pulso , Rigidez Vascular , Adulto , Estudios de Casos y Controles , Bases de Datos Factuales , Síndrome de Ehlers-Danlos/complicaciones , Síndrome de Ehlers-Danlos/fisiopatología , Femenino , Humanos , Masculino , Manometría , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Adulto Joven
12.
Genet Med ; 22(10): 1589-1597, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32820246

RESUMEN

PURPOSE: Biallelic CAD variants underlie CAD deficiency (or early infantile epileptic encephalopathy-50, [EIEE-50]), an error of pyrimidine de novo biosynthesis amenable to treatment via the uridine salvage pathway. We further define the genotype and phenotype with a focus on treatment. METHODS: Retrospective case series of 20 patients. RESULTS: Our study confirms CAD deficiency as a progressive EIEE with recurrent status epilepticus, loss of skills, and dyserythropoietic anemia. We further refine the phenotype by reporting a movement disorder as a frequent feature, and add that milder courses with isolated developmental delay/intellectual disability can occur as well as onset with neonatal seizures. With no biomarker available, the diagnosis relies on genetic testing and functional validation in patient-derived fibroblasts. Underlying pathogenic variants are often rated as variants of unknown significance, which could lead to underrecognition of this treatable disorder. Supplementation with uridine, uridine monophosphate, or uridine triacetate in ten patients was safe and led to significant clinical improvement in most patients. CONCLUSION: We advise a trial with uridine (monophosphate) in all patients with developmental delay/intellectual disability, epilepsy, and anemia; all patients with status epilepticus; and all patients with neonatal seizures until (genetically) proven otherwise or proven unsuccessful after 6 months. CAD deficiency might represent a condition for genetic newborn screening.


Asunto(s)
Epilepsia , Espasmos Infantiles , Suplementos Dietéticos , Humanos , Recién Nacido , Estudios Retrospectivos , Uridina
13.
Am J Hum Genet ; 107(2): 234-250, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32668217

RESUMEN

Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066-11G>A (IVS10-11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G>A];[1066-11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Fenilcetonurias/epidemiología , Fenilcetonurias/genética , Alelos , Biopterinas/análogos & derivados , Biopterinas/genética , Europa (Continente) , Frecuencia de los Genes/genética , Estudios de Asociación Genética/métodos , Genotipo , Homocigoto , Humanos , Mutación/genética , Fenotipo , Fenilalanina/sangre , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/sangre
14.
Swiss Med Wkly ; 150: w20189, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32242911

RESUMEN

INTRODUCTION: Marfan syndrome (MFS) and related connective tissue disorders (CTDs) are increasingly recognised. Genetic testing has greatly improved the diagnostic outcome/power over the last two decades. In this study we describe a multicentre cohort of adults with MFS and related CTDs, with a particular focus on results from genetic testing. METHODS: All patients with MFS and related CTDs were identified from the databases of five centres in the canton of Zurich. Echocardiographic and clinical findings including systemic Marfan score, use of medication and genetic results were retrospectively analysed. MFS was diagnosed using the revised Ghent criteria (including FBN1 genetic testing if available); other CTDs (Loeys-Dietz syndrome) were diagnosed by genetic testing only. RESULTS: A cohort of 103 patients were identified (62 index patients, 41 relatives of family members): 96 patients with MFS and 7 patients with other CTD, 54 males (52%), median age 23 years (range 1–75). The median systemic Marfan score was 5 (range 0–18). Only 40 patients (40/103, 39%) fulfilled criteria for systemic involvement (≥7 points). A history of aortic dissection was present in 14 out of 103 patients (14%). Echocardiographic data were available for all: aortic root enlargement (Z-score ≥2 in adults, Z-score ≥3 in children) was found in 49 patients (48%) and mitral valve prolapse in 64 (62%). Genetic testing had been performed in 80 patients (78%); FBN1 mutations were present in 69 patients (86%); other pathogenic mutations could be identified in seven patients (9%); no disease-causing mutation was found in four patients, three of them fulfilling the Ghent criteria of MFS. Of the mutation-positive patients, 33 had a systemic score of ≥7 and 43 had a systemic score of ≥5. Revised Ghent criteria were fulfilled in 70 patients: in 69 patients with FBN1 mutations and 1 patient with another CTD. Recommended treatment (beta-blocker, angiotensin receptor blocker) was taken by 63% of patients. CONCLUSIONS: In this cohort a high percentage of patients fulfilling the revised Ghent criteria for MFS underwent genetic testing, often leading to or confirming the diagnosis of MFS. Other CTDs could be discriminated best by genetic testing. With respect to the diagnosis of MFS and related CTDs, the usefulness of the systemic score is limited, showing the importance of genetic testing, which enabled definitive diagnosis in 95% of tested patients. Patient education on medical treatment still has to be improved. (Trial registration no: KEK-ZH-Nr. 2013-0241).


Asunto(s)
Síndrome de Marfan , Adolescente , Adulto , Anciano , Niño , Preescolar , Tejido Conectivo , Pruebas Genéticas , Humanos , Lactante , Masculino , Síndrome de Marfan/genética , Persona de Mediana Edad , Estudios Retrospectivos , Suiza , Adulto Joven
15.
Klin Padiatr ; 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32069498

RESUMEN

Pompe disease is a rare metabolic myopathy caused by deficiency of lysosomal α-glucosidase. Reduced enzyme activity results in abnormal intra- and extralysosomal glycogen deposition as well as impaired cellular function and autophagy. Age at manifestation and severity of disease depend on residual enzyme activity. Enzyme replacement therapy (ERT) is available since 2006. In infantile onset Pompe disease, the most severe form, markedly prolonged survival has resulted in a new phenotype with symptoms and problems not encountered previously. In addition, it became apparent that antibody formation against the recombinant human enzyme may adversely affect the response to ERT. This review summarizes new knowledge gained in the last years concerning care of pediatric patients with Pompe disease and gives recommendations for diagnostics, treatment, and follow-up.

16.
Sci Rep ; 10(1): 497, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31949249

RESUMEN

Mutations in the FKBP14 gene encoding FKBP22 (FK506 Binding Protein 22 kDa) cause kyphoscoliotic Ehlers-Danlos Syndrome (kEDS). The first clinical report showed that a lack of FKBP22 protein due to mutations causing nonsense-mediated decay of the mRNA leads to a wide spectrum of clinical phenotypes including progressive kyphoscoliosis, joint hypermobility, hypotonia, hyperelastic skin, hearing loss and aortic rupture. Our previous work showed that these phenotypic features could be correlated with the functions of FKBP22, which preferentially binds to type III, VI and X collagens, but not to type I, II or V collagens. We also showed that FKBP22 catalyzed the folding of type III collagen through its prolyl isomerase activity and acted as a molecular chaperone for type III collagen. Recently, a novel missense mutation Met48Lys in FKBP22 was identified in a patient with kEDS. In this report, we expand the list of substrates of FKBP22 and also demonstrate that the Met48Lys mutation diminishes the activities of FKBP22, indicating that pathology can arise from absence of FKBP22, or partial loss of its function.


Asunto(s)
Colágeno Tipo III/metabolismo , Mutación Missense , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Células Cultivadas , Dicroismo Circular , Colágeno Tipo III/química , Humanos , Modelos Moleculares , Isomerasa de Peptidilprolil/genética , Conformación Proteica , Pliegue de Proteína
17.
Clin Genet ; 97(2): 235-245, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31506931

RESUMEN

Genome-scale high-throughput sequencing enables the detection of unprecedented numbers of sequence variants. Variant filtering and interpretation are facilitated by mutation databases, in silico tools, and population-based reference datasets such as ExAC/gnomAD, while variants are classified using the ACMG/AMP guidelines. These methods, however, pose clinically relevant challenges. We queried the gnomAD dataset for (likely) pathogenic variants in genes causing autosomal-dominant disorders. Furthermore, focusing on the fibrillinopathies Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCA), we screened 500 genomes of our patients for co-occurring variants in FBN1 and FBN2. In gnomAD, we detected 2653 (likely) pathogenic variants in 253 genes associated with autosomal-dominant disorders, enabling the estimation of variant-filtering thresholds and disease predisposition/prevalence rates. In our database, we discovered two families with hitherto unreported co-occurrence of FBN1/FBN2 variants causing phenotypes with mixed or modified MFS/CCA clinical features. We show that (likely) pathogenic gnomAD variants may be more frequent than expected and are challenging to classify according to the ACMG/AMP guidelines as well as that fibrillinopathies are likely underdiagnosed and may co-occur. Consequently, selection of appropriate frequency cutoffs, recognition of digenic variants, and variant classification represent considerable challenges in variant interpretation. Neglecting these challenges may lead to incomplete or missed diagnoses.


Asunto(s)
Aracnodactilia/genética , Contractura/genética , Fibrilina-1/genética , Fibrilina-2/genética , Síndrome de Marfan/genética , Adolescente , Adulto , Anciano , Alelos , Aracnodactilia/fisiopatología , Niño , Contractura/congénito , Contractura/fisiopatología , Bases de Datos Genéticas , Femenino , Mutación del Sistema de Lectura , Estudios de Asociación Genética , Variación Genética , Genotipo , Humanos , Mutación INDEL , Masculino , Síndrome de Marfan/fisiopatología , Persona de Mediana Edad , Linaje , Fenotipo , Secuenciación Completa del Genoma
18.
Clin Genet ; 97(3): 396-406, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31794058

RESUMEN

The 2017 classification of Ehlers-Danlos syndromes (EDS) identifies three types associated with causative variants in COL1A1/COL1A2 and distinct from osteogenesis imperfecta (OI). Previously, patients have been described with variable features of both disorders, and causative variants in COL1A1/COL1A2; but this phenotype has not been included in the current classification. Here, we expand and re-define this OI/EDS overlap as a missing EDS type. Twenty-one individuals from 13 families were reported, in whom COL1A1/COL1A2 variants were found after a suspicion of EDS. None of them could be classified as affected by OI or by any of the three recognized EDS variants associated with COL1A1/COL1A2. This phenotype is dominated by EDS-related features. OI-related features were limited to mildly reduced bone mass, occasional fractures and short stature. Eight COL1A1/COL1A2 variants were novel and five recurrent with a predominance of glycine substitutions affecting residues within the procollagen N-proteinase cleavage site of α1(I) and α2(I) procollagens. Selected variants were investigated by biochemical, ultrastructural and immunofluorescence studies. The pattern of observed changes in the dermis and in vitro for selected variants was more typical of EDS rather than OI. Our findings indicate the existence of a wider recognizable spectrum associated with COL1A1/COL1A2.


Asunto(s)
Colágeno Tipo I/genética , Enfermedades del Tejido Conjuntivo/clasificación , Síndrome de Ehlers-Danlos/clasificación , Variación Genética , Osteogénesis Imperfecta/clasificación , Adolescente , Adulto , Niño , Preescolar , Colágeno Tipo I/ultraestructura , Cadena alfa 1 del Colágeno Tipo I , Tejido Conectivo/ultraestructura , Enfermedades del Tejido Conjuntivo/genética , Demografía , Síndrome de Ehlers-Danlos/genética , Femenino , Heterocigoto , Humanos , Lactante , Masculino , Persona de Mediana Edad , Osteogénesis Imperfecta/genética , Fenotipo , Adulto Joven
19.
Genes (Basel) ; 10(11)2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731524

RESUMEN

The Ehlers-Danlos syndromes (EDS) constitute a clinically and genetically heterogeneous group of connective tissue disorders. Tenascin X (TNX) deficiency is a rare type of EDS, defined as classical-like EDS (clEDS), since it phenotypically resembles the classical form of EDS, though lacking atrophic scarring. Although most patients display a well-defined phenotype, the diagnosis of TNX-deficiency is often delayed or overlooked. Here, we described an additional patient with clEDS due to a homozygous null-mutation in the TNXB gene. A review of the literature was performed, summarizing the most important and distinctive clinical signs of this disorder. Characterization of the cellular phenotype demonstrated a distinct organization of the extracellular matrix (ECM), whereby clEDS distinguishes itself from most other EDS subtypes by normal deposition of fibronectin in the ECM and a normal organization of the α5ß1 integrin.


Asunto(s)
Síndrome de Ehlers-Danlos/genética , Mutación con Pérdida de Función , Tenascina/genética , Adulto , Células Cultivadas , Síndrome de Ehlers-Danlos/patología , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Tenascina/metabolismo
20.
Am J Hum Genet ; 105(4): 836-843, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31564437

RESUMEN

Osteogenesis imperfecta (OI) comprises a genetically heterogeneous group of skeletal fragility diseases. Here, we report on five independent families with a progressively deforming type of OI, in whom we identified four homozygous truncation or frameshift mutations in MESD. Affected individuals had recurrent fractures and at least one had oligodontia. MESD encodes an endoplasmic reticulum (ER) chaperone protein for the canonical Wingless-related integration site (WNT) signaling receptors LRP5 and LRP6. Because complete absence of MESD causes embryonic lethality in mice, we hypothesized that the OI-associated mutations are hypomorphic alleles since these mutations occur downstream of the chaperone activity domain but upstream of ER-retention domain. This would be consistent with the clinical phenotypes of skeletal fragility and oligodontia in persons deficient for LRP5 and LRP6, respectively. When we expressed wild-type (WT) and mutant MESD in HEK293T cells, we detected WT MESD in cell lysate but not in conditioned medium, whereas the converse was true for mutant MESD. We observed that both WT and mutant MESD retained the ability to chaperone LRP5. Thus, OI-associated MESD mutations produce hypomorphic alleles whose failure to remain within the ER significantly reduces but does not completely eliminate LRP5 and LRP6 trafficking. Since these individuals have no eye abnormalities (which occur in individuals completely lacking LRP5) and have neither limb nor brain patterning defects (both of which occur in mice completely lacking LRP6), we infer that bone mass accrual and dental patterning are more sensitive to reduced canonical WNT signaling than are other developmental processes. Biologic agents that can increase LRP5 and LRP6-mediated WNT signaling could benefit individuals with MESD-associated OI.


Asunto(s)
Chaperonas Moleculares/genética , Mutación , Osteogénesis Imperfecta/genética , Animales , Femenino , Genes Recesivos , Células HEK293 , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Ratones , Linaje , Fenotipo , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA