Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(8): 34, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39028977

RESUMEN

Purpose: A single-nucleotide polymorphism in HTRA1 has been linked to age-related macular degeneration (AMD). Here we investigated the potential links between age-related retinal changes, elastin turnover, elastin autoantibody production, and complement C3 deposition in a mouse model with RPE-specific human HTRA1 overexpression. Methods: HTRA1 transgenic mice and age-matched CD1 wild-type mice were analyzed at 6 weeks and 4, 6, and 12 to 14 months of age using in vivo retinal imaging by optical coherence tomography (OCT) and fundus photography, as well as molecular readouts, focusing on elastin and elastin-derived peptide quantification, antielastin autoantibody, and total Ig antibody measurements and immunohistochemistry to examine elastin, IgG, and C3 protein levels in retinal sections. Results: OCT imaging indicated thinning of inner nuclear layer as an early phenotype in HTRA1 mice, followed by age and age/genotype-related thinning of the photoreceptor layer, RPE, and total retina. HTRA1 mice exhibited reduced elastin protein levels in the RPE/choroid and increased elastin breakdown products in the retina and serum. A corresponding age-dependent increase of serum antielastin IgG and IgM autoantibodies and total Ig antibody levels was observed. In the RPE/choroid, these changes were associated with an age-related increase of IgG and C3 deposition. Conclusions: Our results confirm that RPE-specific overexpression of human HTRA1 induces certain AMD-like phenotypes in mice. This includes altered elastin turnover, immune response, and complement deposition in the RPE/choroid in addition to age-related outer retinal and photoreceptor layer thinning. The identification of elastin-derived peptides and corresponding antielastin autoantibodies, together with increased C3 deposition in the RPE/choroid, provides a rationale for an overactive complement system in AMD irrespective of the underlying genetic risk.


Asunto(s)
Modelos Animales de Enfermedad , Elastina , Serina Peptidasa A1 que Requiere Temperaturas Altas , Degeneración Macular , Ratones Transgénicos , Epitelio Pigmentado de la Retina , Tomografía de Coherencia Óptica , Animales , Elastina/metabolismo , Elastina/genética , Ratones , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Degeneración Macular/genética , Degeneración Macular/metabolismo , Autoanticuerpos/sangre , Inmunoglobulina G/sangre , Envejecimiento , Humanos , Complemento C3/genética , Complemento C3/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Inmunohistoquímica , Regulación de la Expresión Génica
2.
Invest Ophthalmol Vis Sci ; 65(2): 42, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38416457

RESUMEN

Müller glia, the main glial cell of the retina, are critical for neuronal and vascular homeostasis in the retina. During age-related macular degeneration (AMD) pathogenesis, Müller glial activation, remodeling, and migrations are reported in the areas of retinal pigment epithelial (RPE) degeneration, photoreceptor loss, and choroidal neovascularization (CNV) lesions. Despite this evidence indicating glial activation localized to the regions of AMD pathogenesis, it is unclear whether these glial responses contribute to AMD pathology or occur merely as a bystander effect. In this review, we summarize how Müller glia are affected in AMD retinas and share a prospect on how Müller glial stress might directly contribute to the pathogenesis of AMD. The goal of this review is to highlight the need for future studies investigating the Müller cell's role in AMD. This may lead to a better understanding of AMD pathology, including the conversion from dry to wet AMD, which has no effective therapy currently and may shed light on drug intolerance and resistance to current treatments.


Asunto(s)
Atrofia Geográfica , Mácula Lútea , Degeneración Macular Húmeda , Humanos , Células Ependimogliales , Retina , Comunicación Celular
3.
Adv Exp Med Biol ; 1415: 67-71, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440016

RESUMEN

Age-related macular degeneration (AMD) is associated with an overactive complement system and an increase in circulating antibodies. Our search for potential neoantigens that can trigger complement activation in disease has led us to investigate elastin. A loss of the elastin layer (EL) of Bruch's membrane (BrM) has been reported in aging and AMD together with an increase of serum elastin-derived peptides and α-elastin antibodies. In the mouse model of cigarette smoke exposure (CSE), damage in BrM, loss of the EL, and vision loss are dependent on complement activation. We have examined the hypothesis that CSE generates immunogenic elastin neoepitopes that trigger an increase in α-elastin IgG and IgM antibodies, which can then bind to the neoepitopes in the target cells or membranes, triggering complement activation. Specifically, we showed that immunization with elastin peptide oxidatively modified by cigarette smoke (ox-elastin) exacerbated ocular pathology and vision loss in CSE mice. In contrast, mice receiving peptide immunotherapy (PIT) with ox-elastin did not lose vision over the smoking period and exhibited a more preserved BrM. Immunization and PIT correlated with humoral immunity and complement activation and IgG/IgM deposition in the RPE/BrM/choroid. Finally, PIT modulated immune markers IFNγ and IL-4. The data further support the hypothesis that complement activation, triggered by immune complex formation in target tissues, plays a role in ocular damage in the CSE model. As PIT with ox-elastin peptides reduces damage, we discuss the possibility that AMD progression might be preventable.


Asunto(s)
Lámina Basal de la Coroides , Degeneración Macular , Ratones , Animales , Lámina Basal de la Coroides/patología , Elastina/metabolismo , Inmunización , Degeneración Macular/metabolismo , Inmunoglobulina M , Inmunoglobulina G
4.
Transl Vis Sci Technol ; 12(7): 17, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37462980

RESUMEN

Purpose: Risk for developing age-related macular degeneration (AMD) is linked to an overactive complement system. In the mouse model of laser-induced choroidal neovascularization (CNV), elevated levels of complement effector molecules, including complement C3, have been identified, and the alternative pathway (AP) is required for pathology. The main soluble AP regular is complement factor H (fH). We have previously shown that AP inhibition via subretinal AAV-mediated delivery of CR2-fH using a constitutive promoter is efficacious in reducing CNV. Here we ask whether the C3 promoter (pC3) effectively drives CR2-fH bioavailability for gene therapy. Methods: Truncated pC3 was used to generate plasmids pC3-mCherry/CR2-fH followed by production of corresponding AAV5 vectors. pC3 activation was determined in transiently transfected ARPE-19 cells stimulated with H2O2 or normal human serum (+/- antioxidant or humanized CR2-fH, respectively). CNV was analyzed in C57BL/6J mice treated subretinally with AAV5-pC3-mCherry/CR2-fH using imaging (optical coherence tomography [OCT] and fundus imaging), functional (electroretinography [ERG]), and molecular (protein expression) readouts. Results: Modulation of pC3 in vitro is complement and oxidative stress dependent, as shown by mCherry fluorescence. AAV5-pC3-CR2-fH were identified as safe and effective using OCT and ERG. CR2-fH expression significantly reduced CNV compared to mCherry and was correlated with reduced levels of C3dg/C3d in the retinal pigment epithelium/choroid fraction. Conclusions: We conclude that complement-dependent regulation of AP inhibition ameliorates AMD pathology as effectively as using a constitutive promoter. Translational Relevance: The goal of anticomplement therapy is to restore homeostatic levels of complement activation, which might be more easily achievable using a self-regulating system.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular Húmeda , Ratones , Animales , Humanos , Vía Alternativa del Complemento/genética , Peróxido de Hidrógeno/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Neovascularización Coroidal/genética , Neovascularización Coroidal/terapia , Degeneración Macular Húmeda/genética , Degeneración Macular Húmeda/terapia
5.
Cells ; 12(9)2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37174708

RESUMEN

Abnormal turnover of the extracellular matrix (ECM) protein elastin has been linked to AMD pathology. Elastin is a critical component of Bruch's membrane (BrM), an ECM layer that separates the retinal pigment epithelium (RPE) from the underlying choriocapillaris. Reduced integrity of BrM's elastin layer corresponds to areas of choroidal neovascularization (CNV) in wet AMD. Serum levels of elastin-derived peptides and anti-elastin antibodies are significantly elevated in AMD patients along with the prevalence of polymorphisms of genes regulating elastin turnover. Despite these results indicating significant associations between abnormal elastin turnover and AMD, very little is known about its exact role in AMD pathogenesis. Here we report on results that suggest that elastase enzymes could play a direct role in the pathogenesis of AMD. We found significantly increased elastase activity in the retinas and RPE cells of AMD mouse models, and AMD patient-iPSC-derived RPE cells. A1AT, a protease inhibitor that inactivates elastase, reduced CNV lesion sizes in mouse models. A1AT completely inhibited elastase-induced VEGFA expression and secretion, and restored RPE monolayer integrity in ARPE-19 monolayers. A1AT also mitigated RPE thickening, an early AMD phenotype, in HTRA1 overexpressing mice, HTRA1 being a serine protease with elastase activity. Finally, in an exploratory study, examining archival records from large patient data sets, we identified an association between A1AT use, age and AMD risk. Our results suggest that repurposing A1AT may have therapeutic potential in modifying the progression to AMD.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular , Humanos , Ratones , Animales , Elastasa Pancreática , Degeneración Macular/metabolismo , Lámina Basal de la Coroides/metabolismo , Coroides/metabolismo , Retina/metabolismo , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas
6.
Biochim Biophys Acta Gen Subj ; 1867(8): 130374, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37187450

RESUMEN

Mitochondrial dynamics is a morphological balance between fragmented and elongated shapes, reflecting mitochondrial metabolic status, cellular damage, and mitochondrial dysfunction. The anaphylatoxin C5a derived from complement component 5 cleavage, enhances cellular responses involved in pathological stimulation, innate immune responses, and host defense. However, the specific response of C5a and its receptor, C5a receptor (C5aR), in mitochondria is unclear. Here, we tested whether the C5a/C5aR signaling axis affects mitochondrial morphology in human-derived retinal pigment epithelial cell monolayers (ARPE-19). C5aR activation with the C5a polypeptide induced mitochondrial elongation. In contrast, oxidatively stressed cells (H2O2) responded to C5a with an enhancement of mitochondrial fragmentation and an increase in the number of pyknotic nuclei. C5a/C5aR signaling increased the expression of mitochondrial fusion-related protein, mitofusin-1 (MFN1) and - 2 (MFN2), as well as enhanced optic atrophy-1 (Opa1) cleavage, which are required for mitochondrial fusion events, whereas the mitochondrial fission protein, dynamin-related protein-1 (Drp1), and mitogen-activated protein kinase (MAPK)-dependent extracellular signal-regulated protein kinase (Erk1/2) phosphorylation were not affected. Moreover, C5aR activation increased the frequency of endoplasmic reticulum (ER)-mitochondria contacts. Finally, oxidative stress induced in a single cell within an RPE monolayer (488 nm blue laser spot stimulation) induced a bystander effect of mitochondrial fragmentation in adjacent surrounding cells only in C5a-treated monolayers. These results suggest that C5a/C5aR signaling produced an intermediate state, characterized by increased mitochondrial fusion and ER-mitochondrial contacts, that sensitizes cells to oxidative stress, leading to mitochondrial fragmentation and cell death.


Asunto(s)
Dinámicas Mitocondriales , Receptor de Anafilatoxina C5a , Humanos , Células Epiteliales , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Pigmentos Retinianos/farmacología
7.
Heliyon ; 8(11): e11359, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36387470

RESUMEN

A critical target in age-related macular degeneration (AMD) is the retinal pigment epithelium (RPE), which forms the outer blood-retina barrier (BRB). RPE-barrier dysfunction might result from the disruption of intercellular tight junctions (TJs). A Connexin43 (Cx43)-based peptide, aCT1, has been shown to prevent VEGF-induced loss of transepithelial resistance, choroidal neovascularization (CNV) and RPE-cell damage via the stabilization of TJs. Here, we probe the relative efficacies of aCT1 alone, anti-VEGF alone, and aCT1 with anti-VEGF in treating AMD pathologies. aCT1 monotherapy administered as topical eye drops with and without a VEGF blocking antibody administered systemically was tested in a mouse model of laser-induced CNV. The CNV mouse is the standard neovascular AMD model, reproducing hallmarks of its pathology. CNV lesion size and fluid accumulation were assessed using optical coherence tomography. During the angiogenesis phase of CNV lesion development, single applications of anti-VEGF or aCT1 reduced lesion and fluid dome size equally. The combinatorial aCT1/anti-VEGF strategy demonstrated lack of additive effects in this model. These data suggest that TJ stabilization by aCT1 is effective in ameliorating RPE dysfunction in a model of AMD-like angiogenesis, and that this strategy is as effective as the current clinical standard of care, anti-VEGF therapy. Critically, aCT1 holds potential as a new neovascular AMD treatment that can be administered using eye drops, which is preferable to the intravitreal injections required for standard anti-VEGF therapy.

8.
J Neuroinflammation ; 19(1): 260, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273134

RESUMEN

BACKGROUND: Forkhead-Box-Protein P3 (FoxP3) is a transcription factor and marker of regulatory T cells, converting naive T cells into Tregs that can downregulate the effector function of other T cells. We previously detected the expression of FoxP3 in retinal pigment epithelial (RPE) cells, forming the outer blood-retina barrier of the immune privileged eye. METHODS: We investigated the expression, subcellular localization, and phosphorylation of FoxP3 in RPE cells in vivo and in vitro after treatment with various stressors including age, retinal laser burn, autoimmune inflammation, exposure to cigarette smoke, in addition of IL-1ß and mechanical cell monolayer destruction. Eye tissue from humans, mouse models of retinal degeneration and rats, and ARPE-19, a human RPE cell line for in vitro experiments, underwent immunohistochemical, immunofluorescence staining, and PCR or immunoblot analysis to determine the intracellular localization and phosphorylation of FoxP3. Cytokine expression of stressed cultured RPE cells was investigated by multiplex bead analysis. Depletion of the FoxP3 gene was performed with CRISPR/Cas9 editing. RESULTS: RPE in vivo displayed increased nuclear FoxP3-expression with increases in age and inflammation, long-term exposure of mice to cigarette smoke, or after laser burn injury. The human RPE cell line ARPE-19 constitutively expressed nuclear FoxP3 under non-confluent culture conditions, representing a regulatory phenotype under chronic stress. Confluently grown cells expressed cytosolic FoxP3 that was translocated to the nucleus after treatment with IL-1ß to imitate activated macrophages or after mechanical destruction of the monolayer. Moreover, with depletion of FoxP3, but not of a control gene, by CRISPR/Cas9 gene editing decreased stress resistance of RPE cells. CONCLUSION: Our data suggest that FoxP3 is upregulated by age and under cellular stress and might be important for RPE function.


Asunto(s)
Degeneración Macular , Epitelio Pigmentado de la Retina , Animales , Humanos , Ratones , Ratas , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/patología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Inflamación/genética , Inflamación/metabolismo , Degeneración Macular/genética , Degeneración Macular/metabolismo , Degeneración Macular/patología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Pigmentos Retinianos/genética , Pigmentos Retinianos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Front Immunol ; 13: 896274, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784301

RESUMEN

Background: Age-related macular degeneration (AMD), the leading cause of irreversible blindness in elderly Caucasian populations, includes destruction of the blood-retina barrier (BRB) generated by the retinal pigment epithelium-Bruch's membrane complex (RPE/BrM), and complement activation. Thrombin is likely to get access to those structures upon BRB integrity loss. Here we investigate the potential role of thrombin in AMD by analyzing effects of the thrombin inhibitor dabigatran. Material and Methods: MarketScan data for patients aged ≥65 years on Medicare was used to identify association between AMD and dabigatran use. ARPE-19 cells grown as mature monolayers were analyzed for thrombin effects on barrier function (transepithelial resistance; TER) and downstream signaling (complement activation, expression of connective tissue growth factor (CTGF), and secretion of vascular endothelial growth factor (VEGF)). Laser-induced choroidal neovascularization (CNV) in mouse is used to test the identified downstream signaling. Results: Risk of new wet AMD diagnosis was reduced in dabigatran users. In RPE monolayers, thrombin reduced TER, generated unique complement C3 and C5 cleavage products, led to C3d/MAC deposition on cell surfaces, and increased CTGF expression via PAR1-receptor activation and VEGF secretion. CNV lesion repair was accelerated by dabigatran, and molecular readouts suggest that downstream effects of thrombin include CTGF and VEGF, but not the complement system. Conclusions: This study provides evidence of association between dabigatran use and reduced exudative AMD diagnosis. Based on the cell- and animal-based studies, we suggest that thrombin modulates wound healing and CTGF and VEGF expression, making dabigatran a potential novel treatment option in AMD.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular Húmeda , Animales , Neovascularización Coroidal/tratamiento farmacológico , Dabigatrán/farmacología , Dabigatrán/uso terapéutico , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Medicare , Ratones , Pigmentos Retinianos , Trombina , Estados Unidos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Degeneración Macular Húmeda/tratamiento farmacológico
10.
Exp Eye Res ; 222: 109164, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35798060

RESUMEN

The extracellular matrix (ECM) and its turnover play a crucial role in the pathogenesis of several inflammatory diseases, including age-related macular degeneration (AMD). Elastin, a critical protein component of the ECM, not only provides structural and mechanical support to tissues, but also mediates several intracellular and extracellular molecular signaling pathways. Abnormal turnover of elastin has pathological implications. In the eye elastin is a major structural component of Bruch's membrane (BrM), a critical ECM structure separating the retinal pigment epithelium (RPE) from the choriocapillaris. Reduced integrity of macular BrM elastin, increased serum levels of elastin-derived peptides (EDPs), and elevated elastin antibodies have been reported in AMD. Existing reports suggest that elastases, the elastin-degrading enzymes secreted by RPE, infiltrating macrophages or neutrophils could be involved in BrM elastin degradation, thus contributing to AMD pathogenesis. EDPs derived from elastin degradation can increase inflammatory and angiogenic responses in tissues, and the elastin antibodies are shown to play roles in immune cell activity and complement activation. This review summarizes our current understanding on the elastases/elastin fragments-mediated mechanisms of AMD pathogenesis.


Asunto(s)
Elastina , Degeneración Macular , Lámina Basal de la Coroides/patología , Coroides/metabolismo , Humanos , Degeneración Macular/metabolismo , Péptidos/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
12.
Exp Eye Res ; 212: 108755, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34487725

RESUMEN

PURPOSE: Age-related macular degeneration (AMD), the leading cause of blindness in western populations, is associated with an overactive complement system, and an increase in circulating antibodies against certain epitopes, including elastin. As loss of the elastin layer of Bruch's membrane (BrM) has been reported in aging and AMD, we previously showed that immunization with elastin peptide oxidatively modified by cigarette smoke (ox-elastin), exacerbated ocular pathology in the smoke-induced ocular pathology (SIOP) model. Here we asked whether ox-elastin peptide-based immunotherapy (PIT) ameliorates damage. METHODS: C57BL/6J mice were injected with ox-elastin peptide at two doses via weekly subcutaneous administration, while exposed to cigarette smoke for 6 months. FcγR-/- and uninjected C57BL/6J mice served as controls. Retinal morphology was assessed by electron microscopy, and complement activation, antibody deposition and mechanisms of immunological tolerance were assessed by Western blotting and ELISA. RESULTS: Elimination of Fcγ receptors, preventing antigen/antibody-dependent cytotoxicity, protected against SIOP. Mice receiving PIT with low dose ox-elastin (LD-PIT) exhibited reduced humoral immunity, reduced complement activation and IgG/IgM deposition in the RPE/choroid, and largely a preserved BrM. While there is no direct evidence of ox-elastin pathogenicity, LD-PIT reduced IFNγ and increased IL-4 within RPE/choroid. High dose PIT was not protective. CONCLUSIONS: These data further support ox-elastin role in ocular damage in part via elastin-specific antibodies, and support the corollary that PIT with ox-elastin attenuates ocular pathology. Overall, damage is associated with complement activation, antibody-dependent cell-mediated cytotoxicity, and altered cytokine signature.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Elastina/inmunología , Inmunoterapia/métodos , Degeneración Macular/terapia , Péptidos/uso terapéutico , Receptores de IgG/efectos de los fármacos , Humo/efectos adversos , Animales , Activación de Complemento , Modelos Animales de Enfermedad , Elastina/metabolismo , Degeneración Macular/inducido químicamente , Degeneración Macular/diagnóstico , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Péptidos/inmunología , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/ultraestructura
13.
Int J Mol Sci ; 22(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064901

RESUMEN

To characterize the mechanisms by which the highly conserved exocyst trafficking complex regulates eye physiology in zebrafish and mice, we focused on Exoc5 (also known as sec10), a central exocyst component. We analyzed both exoc5 zebrafish mutants and retinal pigmented epithelium (RPE)-specific Exoc5 knockout mice. Exoc5 is present in both the non-pigmented epithelium of the ciliary body and in the RPE. In this study, we set out to establish an animal model to study the mechanisms underlying the ocular phenotype and to establish if loss of visual function is induced by postnatal RPE Exoc5-deficiency. Exoc5-/- zebrafish had smaller eyes, with decreased number of melanocytes in the RPE and shorter photoreceptor outer segments. At 3.5 days post-fertilization, loss of rod and cone opsins were observed in zebrafish exoc5 mutants. Mice with postnatal RPE-specific loss of Exoc5 showed retinal thinning associated with compromised visual function and loss of visual photoreceptor pigments. Abnormal levels of RPE65 together with a reduced c-wave amplitude indicate a dysfunctional RPE. The retinal phenotype in Exoc5-/- mice was present at 20 weeks, but was more pronounced at 27 weeks, indicating progressive disease phenotype. We previously showed that the exocyst is necessary for photoreceptor ciliogenesis and retinal development. Here, we report that exoc5 mutant zebrafish and mice with RPE-specific genetic ablation of Exoc5 develop abnormal RPE pigmentation, resulting in retinal cell dystrophy and loss of visual pigments associated with compromised vision. Together, these data suggest that exocyst-mediated signaling in the RPE is required for RPE structure and function, indirectly leading to photoreceptor degeneration.


Asunto(s)
Células Fotorreceptoras/patología , Degeneración Retiniana , Epitelio Pigmentado de la Retina/patología , Proteínas de Transporte Vesicular/fisiología , Trastornos de la Visión/patología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Fotorreceptoras/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Trastornos de la Visión/metabolismo , Pez Cebra
14.
Methods Mol Biol ; 2277: 423-431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34080166

RESUMEN

Intracellular Ca2+ is strictly regulated to maintain optimal levels for function of cellular organelles as well as mitochondrial respiratory signaling at the tricarboxylic acid cycle and electron transport chain level. Optimal Ca2+ concentration for these processes vary between cell types. Furthermore, exposure of mitochondria to sustained, elevated levels of Ca2+ induces mitochondrial Ca2+ overload and damage to mitochondrial oxidative phosphorylation and ATP production. Isolated mitochondria are widely used to study mitochondrial physiology and drug effects on mitochondrial metabolism and respiratory function. However, isolated mitochondria are easily damaged during the mitochondrial isolation process. The present article describes a mitochondrial isolation method using Ca2+-chelation to minimize mitochondrial damage. We follow up the isolation process with an application that requires an optimized buffer Ca2+ concentration: the characterization of their respiratory function using a high-resolution respirometric assay.


Asunto(s)
Técnicas Citológicas/métodos , Mitocondrias/metabolismo , Biología Molecular/métodos , Epitelio Pigmentado de la Retina/citología , Adenosina Trifosfato/metabolismo , Quelantes del Calcio/farmacología , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Biología Molecular/instrumentación , Epitelio Pigmentado de la Retina/efectos de los fármacos
15.
J Ocul Pharmacol Ther ; 37(6): 367-378, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33945330

RESUMEN

Purpose: Metabolic stress and associated mitochondrial dysfunction are implicated in retinal degeneration irrespective of the underlying cause. We identified seven unique chemicals from a Chembridge DiverSET screen and tested their protection against photoreceptor cell death in cell- and animal-based approaches. Methods: Calcium overload (A23187) was triggered in 661W murine photoreceptor-derived cells, and changes in redox potential and real-time changes in cellular metabolism were assessed using the MTT and Seahorse Biosciences XF assay, respectively. Cheminformatics to compare structures, and biodistribution in the living pig eye aided in selection of the lead compound. In-situ, retinal organ cultures of rd1 mouse and S334ter-line-3 rat were tested, in-vivo the light-induced retinal degeneration in albino Balb/c mice was used, assessing photoreceptor cell numbers histologically. Results: Of the seven chemicals, six were protective against A23187- and IBMX-induced loss of mitochondrial capacity, as measured by viability and respirometry in 661W cells. Cheminformatic analyses identified a unique pharmacophore with 6 physico-chemical features based on two compounds (CB11 and CB12). The protective efficacy of CB11 was further shown by reducing photoreceptor cell loss in retinal explants from two retinitis pigmentosa rodent models. Using eye drops, CB11 targeting to the pig retina was confirmed. The same eye drops decreased photoreceptor cell loss in light-stressed Balb/c mice. Conclusions: New chemicals were identified that protect from mitochondrial damage and lead to improved mitochondrial function. Using ex-vivo and in-vivo models, CB11 decreased the loss of photoreceptor cells in murine models of retinal degeneration and may be effective as treatment for different retinal dystrophies.


Asunto(s)
Modelos Animales de Enfermedad , Mitocondrias/efectos de los fármacos , Sustancias Protectoras/farmacología , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Degeneración Retiniana/complicaciones , Retinitis Pigmentosa/prevención & control , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , Mitocondrias/patología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Retinitis Pigmentosa/etiología , Retinitis Pigmentosa/patología
16.
Invest Ophthalmol Vis Sci ; 62(4): 11, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33830174

RESUMEN

Purpose: The risk for age-related macular degeneration has been tied to an overactive complement system. Despite combined attempts by academia and industry to develop therapeutics that modulate the complement response, particularly in the late geographic atrophy form of advanced AMD, to date, there is no effective treatment. We have previously demonstrated that pathology in the smoke-induced ocular pathology (SIOP) model, a model with similarities to dry AMD, is dependent on activation of the alternative complement pathway and that a novel complement activation site targeted inhibitor of the alternative pathway can be delivered to ocular tissues via an adeno-associated virus (AAV). Methods: Two different viral vectors for specific tissue targeting were compared: AAV5-VMD2-CR2-fH for delivery to the retinal pigment epithelium (RPE) and AAV2YF-smCBA-CR2-fH for delivery to retinal ganglion cells (RGCs). Efficacy was tested in SIOP (6 months of passive smoke inhalation), assessing visual function (optokinetic responses), retinal structure (optical coherence tomography), and integrity of the RPE and Bruch's membrane (electron microscopy). Protein chemistry was used to assess complement activation, CR2-fH tissue distribution, and CR2-fH transport across the RPE. Results: RPE- but not RGC-mediated secretion of CR2-fH was found to reduce SIOP and complement activation in RPE/choroid. Bioavailability of CR2-fH in RPE/choroid could be confirmed only after AAV5-VMD2-CR2-fH treatment, and inefficient, adenosine triphosphate-dependent transport of CR2-fH across the RPE was identified. Conclusions: Our results suggest that complement inhibition for AMD-like pathology is required basal to the RPE and argues in favor of AAV vector delivery to the RPE or outside the blood-retina barrier.


Asunto(s)
Activación de Complemento/efectos de los fármacos , Inactivadores del Complemento/administración & dosificación , Degeneración Macular/tratamiento farmacológico , Epitelio Pigmentado de la Retina/patología , Animales , Coroides , Modelos Animales de Enfermedad , Inyecciones Intravítreas , Degeneración Macular/metabolismo , Degeneración Macular/patología , Ratones , Ratones Endogámicos C57BL , Retina , Epitelio Pigmentado de la Retina/efectos de los fármacos , Tomografía de Coherencia Óptica
17.
Exp Eye Res ; 207: 108583, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33878326

RESUMEN

PURPOSE: Age-related macular degeneration is a slowly progressing disease. Studies have tied disease risk to an overactive complement system. We have previously demonstrated that pathology in two mouse models, the choroidal neovascularization (CNV) model and the smoke-induced ocular pathology (SIOP) model, can be reduced by specifically inhibiting the alternative complement pathway (AP). Here we report on the development of a novel injury-site targeted inhibitor of the alternative pathway, and its characterization in models of retinal degeneration. METHODS: Expression of the danger associated molecular pattern, a modified annexin IV, in injured ARPE-19 cells was confirmed by immunohistochemistry and complementation assays using B4 IgM mAb. Subsequently, a construct was prepared consisting of B4 single chain antibody (scFv) linked to a fragment of the alternative pathway inhibitor, fH (B4-scFv-fH). ARPE-19 cells stably expressing B4-scFv-fH were microencapsulated and administered intravitreally or subcutaneously into C57BL/6 J mice, followed by CNV induction or smoke exposure. Progression of CNV was analyzed using optical coherence tomography, and SIOP using structure-function analyses. B4-scFv-fH targeting and AP specificity was assessed by Western blot and binding experiments. RESULTS: B4-scFv-fH was secreted from encapsulated RPE and inhibited complement in RPE monolayers. B4-scFv-fH capsules reduced CNV and SIOP, and western blotting for breakdown products of C3α, IgM and IgG confirmed a reduction in complement activation and antibody binding in RPE/choroid. CONCLUSIONS: Data supports a role for natural antibodies and neoepitope expression in ocular disease, and describes a novel strategy to target AP-specific complement inhibition to diseased tissue in the eye. PRECIS: AMD risk is tied to an overactive complement system, and ocular injury is reduced by alternative pathway (AP) inhibition in experimental models. We developed a novel inhibitor of the AP that targets an injury-specific danger associated molecular pattern, and characterized it in disease models.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Inactivadores del Complemento/uso terapéutico , Vía Alternativa del Complemento/efectos de los fármacos , Modelos Animales de Enfermedad , Inmunoglobulina M/inmunología , Degeneración Retiniana/terapia , Epitelio Pigmentado de la Retina/metabolismo , Animales , Western Blotting , Línea Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Neovascularización Coroidal/diagnóstico por imagen , Neovascularización Coroidal/inmunología , Neovascularización Coroidal/terapia , Complemento C3/antagonistas & inhibidores , Complemento C3/genética , Sistemas de Liberación de Medicamentos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/inmunología , Tomografía de Coherencia Óptica , Transfección
18.
Front Immunol ; 12: 628062, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746964

RESUMEN

Complement component 3 fragment C3a is an anaphylatoxin involved in promoting cellular responses important in immune response and host defense. Its receptor (C3a receptor, C3aR) is distributed on the plasma membrane; however, lysosomal localization in immune cells has been reported. Oxidative stress increases intracellular reactive oxygen species (ROS), and ROS activate complement signaling in immune cells and metabolic reprogramming. Here we tested oxidative stress and intracellular complement in mitochondrial dysfunction in RPE cells using high resolution live-cell imaging, and metabolism analysis in isolated mitochondria using Seahorse technology. While C3aR levels were unaffected by oxidative stress, its cell membrane levels decreased and mitochondrial (mt) localization increased. Trafficking was dependent on endocytosis, utilizing endosomal-to-mitochondrial cargo transfer. H2O2-treatment also increased C3a-mtC3aR co-localization dose-dependently. In isolated mitochondria from H2O2-treated cells C3a increased mitochondrial Ca2+ uptake, that could be inhibited by C3aR antagonism (SB290157), mitochondrial Ca2+ uniporter blocker (Ru360), and Gαi-protein inhibition (pertussis toxin, PTX); and inhibited mitochondrial repiration in an SB290157- and PTX-dependent manner. Specifically, mtC3aR activation inhibited state III ADP-driven respiration and maximal respiratory capacity. Mitochondria from control cells did not respond to C3a. Furthermore, transmitochondrial cybrid ARPE-19 cells harboring J haplogroup mitochondria that confer risk for age-related macular degeneration, showed high levels of mtC3aR and reduced ATP production upon C3a stimulation. Our findings suggest that oxidative stress increases mtC3aR, leading to altered mitochondrial calcium uptake and ATP production. These studies will have important implication in our understanding on the balance of extra- and intracellular complement signaling in controlling cellular health and dysfunction.


Asunto(s)
Metabolismo Energético , Células Epiteliales/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Receptores de Complemento/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Línea Celular , Respiración de la Célula , Endocitosis , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Humanos , Peróxido de Hidrógeno/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/inmunología , Estrés Oxidativo/efectos de los fármacos , Transporte de Proteínas , Receptores de Complemento/genética , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/inmunología
19.
Biochim Biophys Acta Gen Subj ; 1865(4): 129798, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33217521

RESUMEN

PURPOSE: Extracellular vesicles (EVs) are predicted to represent the internal state of cells. In polarized RPE monolayers, EVs can mediate long-distance communication, requiring endocytosis via protein-protein interactions. EV uptake from oxidatively stressed donor cells triggers loss in transepithelial resistance (TER) in recipient monolayers mediated by HDAC6. Here, we examine EVs released from RPE cells with identical nuclear genes but different mitochondrial (mt)DNA haplogroups (H, J). J-cybrids produce less ATP, and the J-haplogroup is associated with a higher risk for age-related macular degeneration. METHODS: Cells were grown as mature monolayers to either collect EVs from apical surfaces or to serve as naïve recipient cells. Transfer assays, transferring EVs to a recipient monolayer were performed, monitoring TER and EV-uptake. The presence of known EV surface proteins was quantified by protein chemistry. RESULTS: H- and J-cybrids were confirmed to exhibit different levels of TER and energy metabolism. EVs from J-cybrids reduced TER in recipient ARPE-19 cells, whereas EVs from H-cybrids were ineffective. TER reduction was mediated by HDAC6 activity, and EV uptake required interaction between integrin and its ligands and surface proteoglycans. Protein quantifications confirmed elevated levels of fibronectin and annexin A2 on J-cybrid EVs. CONCLUSIONS: We speculate that RPE EVs have a finite set of ligands (membrane proteoglycans and integrins and/or annexin A2) that are elevated in EVs from stressed cells; and that if EVs released by the RPE could be captured from serum, that they might provide a disease biomarker of RPE-dependent diseases.


Asunto(s)
ADN Mitocondrial/metabolismo , Vesículas Extracelulares/metabolismo , Mitocondrias/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Transporte Biológico , Línea Celular , Metabolismo Energético , Humanos , Epitelio Pigmentado de la Retina/citología
20.
Invest Ophthalmol Vis Sci ; 61(14): 11, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33289791

RESUMEN

Purpose: Age-related macular degeneration (AMD) shares similar risk factors and inflammatory responses with rheumatoid arthritis (RA). Previously, we identified increased risk for dry AMD among patients with RA compared to control subjects, using retrospective data analysis. In this current study, we investigate the role of systemic inflammation triggered in a murine model of arthritis on choroidal neovascularization and retinal pigment epithelium (RPE) degeneration mouse models. Methods: Collagen-induced arthritis (CIA) was induced in C57BL/6J mice prior to laser-induced choroidal neovascularization (CNV; wet AMD model) or sodium iodate-induced retinal degeneration (NaIO3; dry AMD model). CNV lesion size and retinal thickness were quantified by optical coherence photography (OCT), visual function was analyzed using optokinetic response and electroretinography, RPE morphology was examined by immunohistochemistry, and inflammatory gene expression was analyzed by quantitative PCR. Results: CIA mice demonstrated decreased spatial acuity and contrast sensitivity, whereas no difference was observed in the RPE-generated c-wave. CNV lesion size was decreased in CIA mice. NaIO3 decreased c-wave amplitude, as well as retinal thickness, which was augmented by CIA. NaIO3 treatment resulted in loss of normal RPE hexagonal shape, which was further aggravated by CIA. Increased Cxcl9 expression was observed in the presence of CIA and CIA combined with AMD. Disease severity differences were observed between sexes. Conclusions: Our data suggest systemic inflammation by CIA results in increased pathology in a dry AMD model, whereas it reduces lesions in a wet AMD model. These findings highlight the need for additional investigation into the role of secondary inflammation and sex-based differences on AMD.


Asunto(s)
Inflamación/complicaciones , Degeneración Macular/etiología , Animales , Artritis Experimental/complicaciones , Neovascularización Coroidal/etiología , Neovascularización Coroidal/patología , Modelos Animales de Enfermedad , Femenino , Inflamación/etiología , Degeneración Macular/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Epitelio Pigmentado de la Retina/patología , Tomografía de Coherencia Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA