Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
2.
Elife ; 122024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488657

RESUMEN

The pelvic organs (bladder, rectum, and sex organs) have been represented for a century as receiving autonomic innervation from two pathways - lumbar sympathetic and sacral parasympathetic - by way of a shared relay, the pelvic ganglion, conceived as an assemblage of sympathetic and parasympathetic neurons. Using single-cell RNA sequencing, we find that the mouse pelvic ganglion is made of four classes of neurons, distinct from both sympathetic and parasympathetic ones, albeit with a kinship to the former, but not the latter, through a complex genetic signature. We also show that spinal lumbar preganglionic neurons synapse in the pelvic ganglion onto equal numbers of noradrenergic and cholinergic cells, both of which therefore serve as sympathetic relays. Thus, the pelvic viscera receive no innervation from parasympathetic or typical sympathetic neurons, but instead from a divergent tail end of the sympathetic chains, in charge of its idiosyncratic functions.


Asunto(s)
Neuronas , Vísceras , Ratones , Animales , Neuronas/fisiología , Sistema Nervioso Autónomo , Sistema Nervioso Simpático/metabolismo , Pelvis
3.
Nat Commun ; 14(1): 2575, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142597

RESUMEN

Noradrenergic and mesenchymal identities have been characterized in neuroblastoma cell lines according to their epigenetic landscapes and core regulatory circuitries. However, their relationship and relative contribution in patient tumors remain poorly defined. We now document spontaneous and reversible plasticity between the two identities, associated with epigenetic reprogramming, in several neuroblastoma models. Interestingly, xenografts with cells from each identity eventually harbor a noradrenergic phenotype suggesting that the microenvironment provides a powerful pressure towards this phenotype. Accordingly, such a noradrenergic cell identity is systematically observed in single-cell RNA-seq of 18 tumor biopsies and 15 PDX models. Yet, a subpopulation of these noradrenergic tumor cells presents with mesenchymal features that are shared with plasticity models, indicating that the plasticity described in these models has relevance in neuroblastoma patients. This work therefore emphasizes that intrinsic plasticity properties of neuroblastoma cells are dependent upon external cues of the environment to drive cell identity.


Asunto(s)
Plasticidad de la Célula , Neuroblastoma , Humanos , Neuroblastoma/metabolismo , Línea Celular Tumoral , Microambiente Tumoral/genética
4.
Cancers (Basel) ; 14(11)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35681734

RESUMEN

Neuroblastoma arising from the adrenal differ from ganglionic neuroblastoma both genetically and clinically, with adrenal tumors being associated with a more severe prognosis. The different tumor properties may be linked to specific tumor founder cells in adrenal and sympathetic ganglia. To address this question, we first set up cultures of mouse sympathetic neuroblasts and adrenal chromaffin cells. These cultures were then treated with various proliferation inhibitors to identify lineage-specific responses. We show that neuroblast and chromaffin cell proliferation was affected by WNT, ALK, IGF1, and PRC2/EZH2 signaling inhibitors to a similar extent. However, differential effects were observed in response to bromodomain and extraterminal (BET) protein inhibitors (JQ1, GSK1324726A) and to the CDK-7 inhibitor THZ1, with BET inhibitors preferentially affecting chromaffin cells, and THZ1 preferentially affecting neuroblasts. The differential dependence of chromaffin cells and neuroblasts on BET and CDK signaling may indicate different mechanisms during tumor initiation in sympathetic ganglia and adrenal.

5.
Cell Tissue Res ; 386(3): 455-475, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34757495

RESUMEN

During the last 30 years, our understanding of the development and diversification of postganglionic sympathetic neurons has dramatically increased. In parallel, the list of target structures has been critically extended from the cardiovascular system and selected glandular structures to metabolically relevant tissues such as white and brown adipose tissue, lymphoid tissues, bone, and bone marrow. A critical question now emerges for the integration of the diverse sympathetic neuron classes into neural circuits specific for these different target tissues to achieve the homeostatic regulation of the physiological ends affected.


Asunto(s)
Vías Nerviosas/fisiología , Neuronas/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Diferenciación Celular , Humanos
7.
Cell Tissue Res ; 382(2): 201-231, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32930881

RESUMEN

Selective sympathetic and parasympathetic pathways that act on target organs represent the terminal actors in the neurobiology of homeostasis and often become compromised during a range of neurodegenerative and traumatic disorders. Here, we delineate several neurotransmitter and neuromodulator phenotypes found in diverse parasympathetic and sympathetic ganglia in humans and rodent species. The comparative approach reveals evolutionarily conserved and non-conserved phenotypic marker constellations. A developmental analysis examining the acquisition of selected neurotransmitter properties has provided a detailed, but still incomplete, understanding of the origins of a set of noradrenergic and cholinergic sympathetic neuron populations, found in the cervical and trunk region. A corresponding analysis examining cholinergic and nitrergic parasympathetic neurons in the head, and a range of pelvic neuron populations, with noradrenergic, cholinergic, nitrergic, and mixed transmitter phenotypes, remains open. Of particular interest are the molecular mechanisms and nuclear processes that are responsible for the correlated expression of the various genes required to achieve the noradrenergic phenotype, the segregation of cholinergic locus gene expression, and the regulation of genes that are necessary to generate a nitrergic phenotype. Unraveling the neuron population-specific expression of adhesion molecules, which are involved in axonal outgrowth, pathway selection, and synaptic organization, will advance the study of target-selective autonomic pathway generation.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Ganglios Simpáticos/fisiología , Animales , Humanos , Neuronas , Fenotipo , Roedores
8.
J Mol Neurosci ; 68(3): 439-451, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30058008

RESUMEN

The sympathetic nervous system (SNS) serves to maintain homeostasis of vital organ systems throughout the body, and its dysfunction plays a major role in human disease. The SNS also links the central nervous system to the immune system during different types of stress via innervation of the lymph nodes, spleen, thymus, and bone marrow. Previous studies have shown that pituitary adenylate cyclase-activating polypeptide (PACAP, gene name adcyap1) exhibits anti-inflammatory properties in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Because PACAP is known to regulate SNS function, we hypothesized that part of the immunoprotective action of PACAP is due to its neuromodulatory effects on sympathetic neurons. To examine this, we used an inducible, targeted approach to conditionally disrupt not only the PACAP-preferring PAC1 receptor gene (adcyap1r1) in dopamine ß-hydroxylase-expressing cells, which includes postganglionic sympathetic neurons, but also catecholaminergic neurons in the brain and adrenomedullary chromaffin cells. In contrast to our previous EAE studies using PACAP global knockout mice which developed severe and prolonged EAE, we found that mice with conditional loss of PAC1 receptors in catecholaminergic cells developed a delayed time course of EAE with reduced helper T cell type 1 (Th1) and Th17 and enhanced Th2 cell polarization. At later time points, similar to mice with global PACAP loss, mice with conditional loss of PAC1 exhibited more severe clinical disease than controls. The latter was associated with a reduction in the abundance of thymic regulatory T cells (Tregs). These studies indicate that PAC1 receptor signaling acts in catecholaminergic cells in a time-dependent manner. At early stages of disease development, it enhances the ability of the SNS to polarize the Th response towards a more inflammatory state. Then, after disease is established, it enhances the ability of the SNS to dampen the inflammatory response via Tregs. The lack of concordance in results between global PACAP KO mice and mice with the PAC1 deletion targeted to catecholaminergic cells during early EAE may be explained by the fact that PACAP acts to regulate inflammation via multiple receptor subtypes and multiple targets, including inflammatory cells.


Asunto(s)
Células Cromafines/metabolismo , Neuronas Dopaminérgicas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Transducción de Señal , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología
9.
J Mol Neurosci ; 68(3): 452, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30362069

RESUMEN

The original version of this article unfortunately contained mistakes. The captured article title and corresponding author were incorrect.

10.
Neural Dev ; 13(1): 20, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30213267

RESUMEN

Remarkable progress in a range of biomedical disciplines has promoted the understanding of the cellular components of the autonomic nervous system and their differentiation during development to a critical level. Characterization of the gene expression fingerprints of individual neurons and identification of the key regulators of autonomic neuron differentiation enables us to comprehend the development of different sets of autonomic neurons. Their individual functional properties emerge as a consequence of differential gene expression initiated by the action of specific developmental regulators. In this review, we delineate the anatomical and physiological observations that led to the subdivision into sympathetic and parasympathetic domains and analyze how the recent molecular insights melt into and challenge the classical description of the autonomic nervous system.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/fisiología , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/fisiología , Animales , Humanos , Factor de Crecimiento Nervioso/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Cancer Res ; 78(8): 1935-1947, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29382709

RESUMEN

Neuroblastoma is one of only a few human cancers that can spontaneously regress even after extensive dissemination, a poorly understood phenomenon that occurs in as many as 10% of patients. In this study, we identify the TALE-homeodomain transcription factor MEIS2 as a key contributor to this phenomenon. We identified MEIS2 as a MYCN-independent factor in neuroblastoma and showed that in this setting the alternatively spliced isoforms MEIS2A and MEIS2D exert antagonistic functions. Specifically, expression of MEIS2A was low in aggressive stage 4 neuroblastoma but high in spontaneously regressing stage 4S neuroblastoma. Moderate elevation of MEIS2A expression reduced proliferation of MYCN-amplified human neuroblastoma cells, induced neuronal differentiation and impaired the ability of these cells to form tumors in mice. In contrast, MEIS2A silencing or MEIS2D upregulation enhanced the aggressiveness of the tumor phenotype. Mechanistically, MEIS2A uncoupled a negative feedback loop that restricts accumulation of cellular retinoic acid, an effective agent in neuroblastoma treatment. Overall, our results illuminate the basis for spontaneous regression in neuroblastoma and identify an MEIS2A-specific signaling network as a potential therapeutic target in this common pediatric malignancy.Significance: This study illuminates the basis for spontaneous regressions that can occur in a common pediatric tumor, with implications for the development of new treatment strategies. Cancer Res; 78(8); 1935-47. ©2018 AACR.


Asunto(s)
Carcinogénesis , Proteínas de Homeodominio/fisiología , Neuroblastoma/patología , Isoformas de Proteínas/fisiología , Factores de Transcripción/fisiología , Empalme Alternativo , Animales , Diferenciación Celular/fisiología , Línea Celular Tumoral , Proliferación Celular , Exones , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Humanos , Masculino , Ratones , Ratones Desnudos , Neuroblastoma/metabolismo , Pronóstico , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , ARN Mensajero/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Tretinoina/metabolismo
13.
Cell Tissue Res ; 372(2): 325-337, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29374774

RESUMEN

The ALK gene encodes a tyrosine kinase receptor characterized by an expression pattern mainly restricted to the developing central and peripheral nervous systems. In 2008, the discovery of ALK activating mutations in neuroblastoma, a tumor of the sympathetic nervous system, represented a breakthrough in the understanding of the pathogenesis of this pediatric cancer and established mutated ALK as a tractable therapeutic target for precision medicine. Subsequent studies addressed the identity of ALK ligands, as well as its physiological function in the sympathoadrenal lineage, its role in neuroblastoma development and the signaling pathways triggered by mutated ALK. This review focuses on these different aspects of the ALK biology and summarizes the various therapeutic strategies relying on ALK inhibition in neuroblastoma, either as monotherapies or combinatory treatments.


Asunto(s)
Quinasa de Linfoma Anaplásico/metabolismo , Neuroblastoma/enzimología , Neuroblastoma/patología , Neuronas/patología , Sistema Nervioso Simpático/patología , Quinasa de Linfoma Anaplásico/química , Quinasa de Linfoma Anaplásico/genética , Animales , Humanos , Mutación , Neurogénesis , Neuronas/metabolismo
14.
Nat Genet ; 49(9): 1408-1413, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28740262

RESUMEN

Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.


Asunto(s)
Linaje de la Célula/genética , Regulación Neoplásica de la Expresión Génica/genética , Neuroblastoma/genética , Factores de Transcripción/genética , Animales , Western Blotting , Línea Celular Tumoral/clasificación , Linaje de la Célula/efectos de los fármacos , Doxiciclina/farmacología , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Heterogeneidad Genética , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Interferencia de ARN , Tratamiento con ARN de Interferencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
15.
J Neurosci ; 36(40): 10425-10439, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27707976

RESUMEN

Neuroblastoma (NB) is a childhood tumor that arises from the sympathoadrenal lineage. MYCN amplification is the most reliable marker for poor prognosis and MYCN overexpression in embryonic mouse sympathetic ganglia results in NB-like tumors. MYCN cooperates with mutational activation of anaplastic lymphoma kinase (ALK), which promotes progression to NB, but the role of MYCN and ALK in tumorigenesis is still poorly understood. Here, we use chick sympathetic neuroblasts to examine the normal function of MYCN and MYC in the control of neuroblast proliferation, as well as effects of overexpression of MYCN, MYC, and activated ALK, alone and in combination. We demonstrate that MYC is more strongly expressed than MYCN during neurogenesis and is important for in vitro neuroblast proliferation. MYC and MYCN overexpression elicits increased proliferation but does not sustain neuroblast survival. Unexpectedly, long-term expression of activated ALKF1174L leads to cell-cycle arrest and promotes differentiation and survival of postmitotic neurons. ALKF1174L induces NEFM, RET, and VACHT and results in decreased expression of proapototic (BMF, BIM), adrenergic (TH), and cell-cycle genes (e.g., CDC25A, CDK1). In contrast, neuroblast proliferation is maintained when MYCN and ALKF1174L are coexpressed. Proliferating MYCN/ALKF1174L neuroblasts display a differentiated phenotype but differ from ALK-expressing neurons by the upregulation of SKP2, CCNA2, E2F8, and DKC1 Inhibition of the ubiquitin ligase SKP2 (S-phase kinase-associated protein 2), which targets the CDK inhibitor p27 for degradation, reduces neuroblast proliferation, implicating SKP2 in the maintained proliferation of MYCN/ALKF1174L neuroblasts. Together, our results characterize MYCN/ALK cooperation leading to neuroblast proliferation and survival that may represent initial steps toward NB development. SIGNIFICANCE STATEMENT: MYCN overexpression combined with activated anaplastic lymphoma kinase (ALK) is sufficient to induce neuroblastoma (NB) in mouse sympathoadrenal cells. To address cellular and molecular effects elicited by MYCN/ALK cooperation, we used cultures of chick sympathetic neuroblasts. We demonstrate that MYCN increases proliferation but not survival, whereas long-term expression of ALKF1174L elicits cell-cycle exit, differentiation, and survival of postmitotic neurons. Combined MYCN/ALKF1174L expression allows long-term proliferation and survival of neuroblasts with differentiated characteristics. In the presence of ALKF1174L signaling, MYCN induces the expression of the ubiquitin ligase SKP2 (S-phase kinase-associated protein 2), which targets p27 for degradation and is also upregulated in high-risk NB. SKP2 inhibition supports a function for SKP2 in the maintained neuroblast proliferation downstream of MYCN/ALK, which may represent an early step toward tumorigenesis.


Asunto(s)
Proteína Proto-Oncogénica N-Myc/genética , Células-Madre Neurales , Neuroblastoma/patología , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal/genética , Quinasa de Linfoma Anaplásico , Animales , Apoptosis/genética , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Embrión de Pollo , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Neuronas/patología , Proteínas Proto-Oncogénicas c-myc/genética
16.
Cell Tissue Res ; 365(2): 225-32, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27094431

RESUMEN

The neural-crest-derived sympathoadrenal cell lineage gives rise to sympathetic neurons and to endocrine chromaffin cells of the adrenal medulla. Both cell types express a largely overlapping set of genes, including those coding for the molecular machinery related to the synthesis and exocytotic release of catecholamines. During their early development, sympathetic neurons and chromaffin cells rely on a shared transcription factor network that controls the establishment of these common features. Despite many similarities, mature sympathetic neurons and chromaffin cells significantly differ regarding their morphology and function. Most prominently, sympathetic neurons possess axons that are absent in mammalian adrenal chromaffin cells. The molecular mechanism underlying the divergent development of sympathoadrenal cells into neuronal and endocrine cells remains elusive. Mutational inactivation of the ribonuclease dicer hints at the importance of microRNAs in this diversification. We show here that miR-124 is detectable in developing sympathetic neurons but absent in chromaffin cell precursors. We further demonstrate that miR-124 promotes neurite elongation when transfected into cultured chromaffin cells indicating its capability to support the establishment of a neuronal morphology in non-neuronal sympathoadrenal cells. Our results also show that treatment of PC12 cells with the neurotrophin nerve growth factor leads to an upregulation of miR-124 expression and that inhibition of miR-124 reduces nerve-growth-factor-induced neurite outgrowth in PC12 cells. Thus, our data indicate that miR-124 contributes to the establishment of specific neuronal features in developing sympathoadrenal cells.


Asunto(s)
Médula Suprarrenal/citología , Linaje de la Célula/genética , Células Cromafines/metabolismo , Perfilación de la Expresión Génica , MicroARNs/metabolismo , Neuritas/metabolismo , Sistema Nervioso Simpático/citología , Amidas/farmacología , Animales , Linaje de la Célula/efectos de los fármacos , Células Cromafines/efectos de los fármacos , Hibridación in Situ , Ratones , MicroARNs/genética , Factores de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Células PC12 , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Ratas , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
17.
Dev Neurobiol ; 76(10): 1111-24, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26818017

RESUMEN

The bHLH transcription factor Hand2 is essential for the acquisition and maintenance of noradrenergic properties of embryonic sympathetic neurons and controls neuroblast proliferation. Hand2 is also expressed in embryonic and postnatal parasympathetic ganglia and remains expressed in sympathetic neurons up to the adult stage. Here, we address its function in developing parasympathetic and adult sympathetic neurons. We conditionally deleted Hand2 in the parasympathetic sphenopalatine ganglion by crossing a line of floxed Hand2 mice with DbhiCre transgenic mice, taking advantage of the transient Dbh expression in parasympathetic ganglia. Hand2 elimination does not affect Dbh expression and sphenopalatine ganglion size at E12.5 and E16.5, in contrast to sympathetic ganglia. These findings demonstrate different functions for Hand2 in the parasympathetic and sympathetic lineage. Our previous Hand2 knockdown in postmitotic, differentiated chick sympathetic neurons resulted in decreased expression of noradrenergic marker genes but it was unclear whether Hand2 is required for maintaining noradrenergic neuron identity in adult animals. We now show that Hand2 elimination in adult Dbh-expressing sympathetic neurons does not decrease the expression of Th and Dbh, in contrast to the situation during development. However, gene expression profiling of adult sympathetic neurons identified 75 Hand2-dependent target genes. Interestingly, a notable proportion of down-regulated genes (15%) encode for proteins with synaptic and neurotransmission functions. These results demonstrate a change in Hand2 target genes during maturation of sympathetic neurons. Whereas Hand2 controls genes regulating noradrenergic differentiation during development, Hand2 seems to be involved in the regulation of genes controlling neurotransmission in adult sympathetic neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1111-1124, 2016.


Asunto(s)
Sistema Nervioso Autónomo/crecimiento & desarrollo , Sistema Nervioso Autónomo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neuronas/metabolismo , Animales , Sistema Nervioso Autónomo/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ganglios Parasimpáticos/citología , Ganglios Parasimpáticos/crecimiento & desarrollo , Ganglios Parasimpáticos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Antígeno Ki-67/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Ratones Transgénicos , Neuronas/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo , Transcriptoma
18.
J Neurosci ; 35(50): 16531-44, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26674877

RESUMEN

The RNA binding protein Lin28B is expressed in developing tissues and sustains stem and progenitor cell identity as a negative regulator of the Let-7 family of microRNAs, which induces differentiation. Lin28B is activated in neuroblastoma (NB), a childhood tumor in sympathetic ganglia and adrenal medulla. Forced expression of Lin28B in embryonic mouse sympathoadrenal neuroblasts elicits postnatal NB formation. However, the normal function of Lin28B in the development of sympathetic neurons and chromaffin cells and the mechanisms involved in Lin28B-induced tumor formation are unclear. Here, we demonstrate a mirror-image expression of Lin28B and Let-7a in developing chick sympathetic ganglia. Lin28B expression is not restricted to undifferentiated progenitor cells but, is observed in proliferating noradrenergic neuroblasts. Lin28 knockdown in cultured sympathetic neuroblasts decreases proliferation, whereas Let-7 inhibition increases the proportion of neuroblasts in the cell cycle. Lin28B overexpression enhances proliferation, but only during a short developmental period, and it does not reduce Let-7a. Effects of in vivo Lin28B overexpression were analyzed in the LSL-Lin28B(DBHiCre) mouse line. Sympathetic ganglion and adrenal medulla volume and the expression level of Let-7a were not altered, although Lin28B expression increased by 12- to 17-fold. In contrast, Let-7a expression was strongly reduced in LSL-Lin28B(DbhiCre) NB tumor tissue. These data demonstrate essential functions for endogenous Lin28 and Let-7 in neuroblast proliferation. However, Lin28B overexpression neither sustains neuroblast proliferation nor affects let-7 expression. Thus, in contrast to other pediatric tumors, Lin28B-induced NB is not due to expansion of proliferating embryonic neuroblasts, and Let-7-independent functions are implicated during initial NB development. SIGNIFICANCE STATEMENT: Lin28A/B proteins are highly expressed in early development and maintain progenitor cells by blocking the biogenesis and differentiation function of Let-7 microRNAs. Lin28B is aberrantly upregulated in the childhood tumor neuroblastoma (NB). NB develops in sympathetic ganglia and adrenal medulla and is elicited by forced Lin28B expression. We demonstrate that Lin28A/B and Let-7 are essential for sympathetic neuroblast proliferation during normal development. Unexpectedly, Lin28B upregulation in a mouse model does not affect neuroblast proliferation, ganglion size, and Let-7 expression during early postnatal development. Lin28B-induced NB, in contrast to other pediatric cancers, does not evolve from neuroblasts that continue to divide and involves Let-7-independent functions during initial development.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas de Unión al ADN/genética , MicroARNs/genética , Neuroblastoma/genética , Neuroblastoma/patología , Sistema Nervioso Simpático/crecimiento & desarrollo , Glándulas Suprarrenales/metabolismo , Animales , Proliferación Celular , Embrión de Pollo , Proteínas de Unión al ADN/fisiología , Ganglios Simpáticos/patología , Ratones , Ratones de la Cepa 129 , MicroARNs/fisiología , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Proteínas de Unión al ARN , Células Madre/metabolismo , Sistema Nervioso Simpático/fisiología
19.
Dev Neurobiol ; 75(12): 1352-67, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25788138

RESUMEN

Neurogenesis in embryonic sympathetic ganglia involves neuroblasts that resume proliferation following neuronal differentiation. As cell cycle exit is not associated with neuronal differentiation, the identity of proliferating neuroblasts is incompletely understood. Here, we use sympathetic ganglia of chick embryos to define the timing of neurogenesis and neuroblast identity focusing on the expression and function of the transcription factor Prox1. We show that a large fraction of neuroblasts has initially withdrawn from the cell cycle at embryonic day 3 (E3), which is reflected by a high proportion of p27(+)/Islet1(+) neuroblasts (63%) and low numbers of EdU(+)/Islet1(+) cells (12%). The proportion of proliferating Islet1(+) neuroblasts, identified by EdU pulse labeling and by the absence of the postmitotic marker p27 increases to reach maximal levels at E5, when virtually all neuroblasts are in the cell cycle (95%). Subsequently, the proportion of EdU-labeled and p27(-) neuroblasts is reduced to reach low levels at E11. Interestingly, the expression of the transcription factor Prox1 is restricted to the neuronal lineage, that is, Sox10(+)/Phox2b(+) neuron progenitors, proliferating p27(-)/Islet1(+) neuroblasts and nascent neurons but is rapidly lost in postmitotic neurons. In vitro and in vivo knockdown and overexpression experiments demonstrate effects of Prox1 in the support of neuroblast proliferation and survival. Taken together, these results define the neurogenesis period in the chick paravertebral sympathetic ganglia including an initial cell cycle withdrawal and identify Prox1 as a marker and regulator of proliferating sympathetic neuroblasts.


Asunto(s)
Proteínas Aviares/metabolismo , Ganglios Simpáticos/embriología , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas Aviares/genética , Ciclo Celular/fisiología , Células Cultivadas , Embrión de Pollo , Ganglios Parasimpáticos/embriología , Ganglios Parasimpáticos/fisiología , Ganglios Simpáticos/fisiología , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción/metabolismo , Transfección , Proteínas Supresoras de Tumor/genética
20.
Dev Biol ; 400(2): 210-23, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25661788

RESUMEN

The development of sympathetic neurons and chromaffin cells is differentially controlled at distinct stages by various extrinsic and intrinsic signals. Here we use conditional deletion of Dicer1 in neural crest cells and noradrenergic neuroblasts to identify stage specific functions in sympathoadrenal lineages. Conditional Dicer1 knockout in neural crest cells of Dicer1(Wnt1Cre) mice results in a rapid reduction in the size of developing sympathetic ganglia and adrenal medulla. In contrast, Dicer1 elimination in noradrenergic neuroblasts of Dicer1(DbhiCre) animals affects sympathetic neuron survival starting at late embryonic stages and chromaffin cells persist at least until postnatal week 1. A differential function of Dicer1 signaling for the development of embryonic noradrenergic and cholinergic sympathetic neurons is demonstrated by the selective increase in the expression of Tlx3 and the cholinergic marker genes VAChT and ChAT at E16.5. The number of Dbh, Th and TrkA expressing noradrenergic neurons is strongly decreased in Dicer1-deficient sympathetic ganglia at birth, whereas Tlx3(+)/ Ret(+) cholinergic neurons cells are spared from cell death. The postnatal death of chromaffin cells is preceded by the loss of Ascl1, mir-375 and Pnmt and an increase in the markers Ret and NF-M, which suggests that Dicer1 is required for the maintenance of chromaffin cell differentiation and survival. Taken together, these findings demonstrate distinct stage and lineage specific functions of Dicer1 signaling in differentiation and survival of sympathetic neurons and adrenal chromaffin cells.


Asunto(s)
Médula Suprarrenal/citología , Células Cromafines/citología , ARN Helicasas DEAD-box/metabolismo , Ganglios Simpáticos/citología , Ribonucleasa III/metabolismo , Médula Suprarrenal/embriología , Médula Suprarrenal/inervación , Médula Suprarrenal/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Supervivencia Celular , Células Cromafines/metabolismo , Ganglios Simpáticos/embriología , Ganglios Simpáticos/metabolismo , Ratones , Cresta Neural/metabolismo , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA