Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
2.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37834287

RESUMEN

Periodontitis is a chronic inflammatory disease characterized by the progressive and irreversible destruction of the periodontium. Its aetiopathogenesis lies in the constant challenge of the dysbiotic biofilm, which triggers a deregulated immune response responsible for the disease phenotype. Although the molecular mechanisms underlying periodontitis have been extensively studied, the regulatory mechanisms at the transcriptional level remain unclear. To generate transcriptomic data, we performed RNA shotgun sequencing of the oral mucosa of periodontitis-affected mice. Since genes are not expressed in isolation during pathological processes, we disclose here the complete repertoire of differentially expressed genes (DEG) and co-expressed modules to build Gene Regulatory Networks (GRNs) and identify the Master Transcriptional Regulators of periodontitis. The transcriptional changes revealed 366 protein-coding genes and 42 non-coding genes differentially expressed and enriched in the immune response. Furthermore, we found 13 co-expression modules with different representation degrees and gene expression levels. Our GRN comprises genes from 12 gene clusters, 166 nodes, of which 33 encode Transcription Factors, and 201 connections. Finally, using these strategies, 26 master regulators of periodontitis were identified. In conclusion, combining the transcriptomic analyses with the regulatory network construction represents a powerful and efficient strategy for identifying potential periodontitis-therapeutic targets.


Asunto(s)
Periodontitis , Factores de Transcripción , Animales , Ratones , Factores de Transcripción/genética , Periodontitis/genética , Periodontitis/patología , Transcriptoma , Perfilación de la Expresión Génica , Periodoncio/patología , Redes Reguladoras de Genes
3.
J Clin Med ; 12(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36836104

RESUMEN

BACKGROUND: Pulmonary artery hypertension (PAH) is a chronic and progressive disease. Although current therapy has improved the disease prognosis, PAH has a poor survival rate. The key feature leading to disease progression and death is right ventricular (RV) failure. METHODS AND RESULTS: We assessed the role of trimetazidine, a fatty acid beta-oxidation (FAO) inhibitor, in right ventricular function, remodeling, and functional class in PAH patients, with a placebo-controlled double-blind, case-crossover trial. Twenty-seven PAH subjects were enrolled, randomized, and assigned to trimetazidine or placebo for three months and then reallocated to the other study arm. The primary endpoint was RV morphology and function change after three months of treatment. Secondary endpoints were the change in exercise capacity assessed by a 6 min walk test after three months of treatment and the change in pro-BNP and Galectin-3 plasma levels after three months. Trimetazidine use was safe and well-tolerated. After three months of treatment, patients in the trimetazidine group showed a small but significant reduction of RV diastolic area, and a substantial increase in the 6 min walk distance (418 vs. 438 mt, p = 0.023), without significant changes in biomarkers. CONCLUSIONS: A short course of trimetazidine is safe and well-tolerated on PAH patients, and it is associated with significant increases in the 6MWT and minor but significant improvement in RV remodeling. The therapeutic potential of this drug should be evaluated in larger clinical trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA