Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Dalton Trans ; 51(44): 16845-16851, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36278772

RESUMEN

We have monitored the regeneration of H-ZSM-5 via operando time-resolved powder X-Ray diffraction (PXRD) coupled with mass spectroscopy (MS). Parametric Rietveld refinements and calculation of the extra-framework electronic density by differential Fourier maps analysis provide details on the mode of coke removal combined with the corresponding sub-unit cell changes of the zeolite structure. It is clear that the coke removal is a complex process that occurs in at least two steps; a thermal decomposition followed by oxidation. In a coked zeolite, the straight 10-ring channel circumference is warped to an oval shape due to structural distortion induced by rigid aromatic coke species. The data presented explain why the difference in length between the a-vector and the b-vector of the MFI unit cell is a robust descriptor for bulky coke, as opposed to the unit cell volume, which is affected also by adsorbed species and thermal effects. Our approach holds the promise to quantify and identify coke removal (and formation) in structurally distinct locations within the zeolite framework.

2.
Phys Chem Chem Phys ; 20(41): 26580-26590, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30307454

RESUMEN

The methanol-to-hydrocarbons (MTH) reaction represents a versatile, industrially viable alternative to crude-oil based processes for the production of chemicals and fuels. In the MTH reaction, the shape selectivity of acidic zeolites is exploited to direct the synthesis towards the desired product. However, due to unavoidable side reactions occurring under processing conditions, all MTH catalysts suffer deactivation due to coke formation. Though it is likely that some common characteristics for carbon formation exist for all zeolite topologies, it has been proposed that the differences in shape selectivity among the different catalysts will also influence the individual deactivation mechanisms. As deactivating species are mostly aromatic compounds, highly methylated benzenes and/or polycyclic aromatic hydrocarbons (PAHs) have been discussed. In some cases, these can further grow to extended carbon structures. Here, we have investigated the hydrocarbon reactivities and carbon formation for five topologically different zeolite catalysts through an operando UV-Raman approach, taking advantage of the high sensitivity of this technique towards aromatic and other carbonaceous species. The combination of the spectroscopic tool with activity measurements allowed us to obtain valuable details and some general trends on the deactivation paths during MTH. This approach made accessible unique insight on the complex chemistry of MTH by allowing the real-time observation of hydrocarbon transformations typical for the peculiar topology of each catalyst, usually inaccessible by ex situ techniques.

3.
J Phys Chem Lett ; 9(6): 1324-1328, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29494162

RESUMEN

The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.

4.
Faraday Discuss ; 197: 421-446, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28186217

RESUMEN

Zeolites representing seven different topologies were subjected to life-time assessment studies as methanol to hydrocarbons (MTH) catalysts at 400 °C, P(MeOH) = 13 kPa and P(tot) = 100 kPa. The following topologies were studied: ZSM-22 (TON), ZSM-23 (MTT), IM-5 (IMF), ITQ-13 (ITH), ZSM-5 (MFI), mordenite (MOR) and beta (BEA). Two experimental approaches were used. In the first approach, each catalyst was tested at three different contact times, all giving 100% initial conversion. The life-time before conversion decreased to 50% at each contact time was measured and used to calculate critical contact times (i.e. the contact time needed to launch the autocatalytic MTH reaction) and deactivation rates. It was found that the critical contact time is strongly correlated with pore size: the smaller the pore size, the longer the critical contact time. The second experimental approach consisted of testing the catalysts in a double tube reactor with 100% initial conversion, and quenching the reaction after 4 consecutive times on stream, representing full, partial, and zero conversion. After quenching, the catalyst bed was divided into four segments, which were individually characterised for coke content (temperature-programmed oxidation) and specific surface area (N2 adsorption). The axial deactivation pattern was found to depend on pore size. With increasing pore size, the main source of coke formation changed from methanol conversion (1D 10-ring structures), to partly methanol, partly product conversion (3D 10-ring structures) and finally mainly product conversion (3D 12-ring structure). As a result, the methanol conversion capacity changed little with contact time for ZSM-5, while it increased with increasing contact time for the catalysts with smaller pore sizes, and decreased with increasing contact time for pore sizes larger than ZSM-5.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA