Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cancers (Basel) ; 16(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38611113

RESUMEN

SET-domain containing 2 (SETD2) is a histone methyltransferase and an epigenetic modifier with oncogenic functionality. In the current study, we investigated the potential prognostic role of SETD2 in prostate cancer. A cohort of 202 patients' samples was assembled on tissue microarrays (TMAs) containing incidental, advanced, and castrate-resistant CRPCa cases. Our data showed significant elevated SETD2 expression in advanced and castrate-resistant disease (CRPCa) compared to incidental cases (2.53 ± 0.58 and 2.21 ± 0.63 vs. 1.9 ± 0.68; p < 0.001, respectively). Interestingly, the mean intensity of SETD2 expression in deceased vs. alive patients was also significantly different (2.31 ± 0.66 vs. 2 ± 0.68; p = 0.003, respectively). Overall, high SETD2 expression was found to be considered high risk and was significantly associated with poor prognosis and worse overall survival (OS) (HR 1.80; 95% CI: 1.28-2.53, p = 0.001) and lower cause specific survival (CSS) (HR 3.14; 95% CI: 1.94-5.08, p < 0.0001). Moreover, combining high-intensity SETD2 with PTEN loss resulted in lower OS (HR 2.12; 95% CI: 1.22-3.69, p = 0.008) and unfavorable CSS (HR 3.74; 95% CI: 1.67-8.34, p = 0.001). Additionally, high SETD2 intensity with ERG positive expression showed worse prognosis for both OS (HR 1.99, 95% CI 0.87-4.59; p = 0.015) and CSS (HR 2.14, 95% CI 0.98-4.68, p = 0.058). We also investigated the protein expression database TCPA, and our results showed that high SETD2 expression is associated with a poor prognosis. Finally, we performed TCGA PRAD gene set enrichment analysis (GSEA) data for SETD2 overexpression, and our data revealed a potential association with pathways involved in tumor progression such as the AMPK signaling pathway, the cAMP signaling pathway, and the PI3K-Akt signaling pathway, which are potentially associated with tumor progression, chemoresistance, and a poor prognosis.

2.
Med Biol Eng Comput ; 62(1): 1-45, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37700082

RESUMEN

Medical imaging, also known as radiology, is the field of medicine in which medical professionals recreate various images of parts of the body for diagnostic or treatment purposes. Medical imaging procedures include non-invasive tests that allow doctors to diagnose injuries and diseases without being intrusive TechTarget (n.d.). A number of tools and techniques are used to automate the analysis of medical images acquired with various image processing methods. The brain is one of the largest and most complex organs of the human body and anomaly detection from brain images (i.e., MRI, CT, PET, etc.) is one of the major research areas of medical image analysis. Image processing methods such as filtering and thresholding models, geometry models, graph models, region-based analysis, connected component analysis, machine learning (ML) models, the recent deep learning (DL) models, and various hybrid models are used in brain image analysis. Brain tumors are one of the most common brain diseases with a high mortality rate, and it is difficult to analyze from brain images for the versatility of the shape, location, size, texture, and other characteristics. In this paper, a comprehensive review on brain tumor image analysis is presented with basic ideas of brain tumor, brain imaging, brain image analysis tasks, brain image analysis models, brain tumor image features, performance metrics used for evaluating the models, and some available datasets on brain tumor/medical images. Some challenges of brain tumor analysis are also discussed including suggestions for future research directions. The graphical abstract summarizes the contributions of this paper.


Asunto(s)
Neoplasias Encefálicas , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética , Aprendizaje Automático
3.
Cancers (Basel) ; 15(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37835496

RESUMEN

Cancer in all its forms of expression is a major cause of death. To identify the genomic reason behind cancer, discovery of biomarkers is needed. In this paper, genomic data of bladder cancer are examined for the purpose of biomarker discovery. Genomic biomarkers are indicators stemming from the study of the genome, either at a very low level based on the genome sequence itself, or more abstractly such as measuring the level of gene expression for different disease groups. The latter method is pivotal for this work, since the available datasets consist of RNA sequencing data, transformed to gene expression levels, as well as data on a multitude of clinical indicators. Based on this, various methods are utilized such as statistical modeling via logistic regression and regularization techniques (elastic-net), clustering, survival analysis through Kaplan-Meier curves, and heatmaps for the experiments leading to biomarker discovery. The experiments have led to the discovery of two gene signatures capable of predicting therapy response and disease progression with considerable accuracy for bladder cancer patients which correlates well with clinical indicators such as Therapy Response and T-Stage at surgery with Disease Progression in a time-to-event manner.

4.
Cancers (Basel) ; 15(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37345203

RESUMEN

Arsenite-resistance protein 2, also known as serrate RNA effector molecule (ARS2/SRRT), is known to be involved in cellular proliferation and tumorigenicity. However, its role in prostate cancer (PCa) has not yet been established. We investigated the potential role of SRRT in 496 prostate samples including benign, incidental, advanced, and castrate-resistant patients treated by androgen deprivation therapy (ADT). We also explored the association of SRRT with common genetic aberrations in lethal PCa using immunohistochemistry (IHC) and performed a detailed analysis of SRRT expression using The Cancer Genome Atlas (TCGA PRAD) by utilizing RNA-seq, clinical information (pathological T category and pathological Gleason score). Our findings indicated that high SRRT expression was significantly associated with poor overall survival (OS) and cause-specific survival (CSS). SRRT expression was also significantly associated with common genomic aberrations in lethal PCa such as PTEN loss, ERG gain, mutant TP53, or ATM. Furthermore, TCGA PRAD data revealed that high SRRT mRNA expression was significantly associated with higher Gleason scores, PSA levels, and T pathological categories. Gene set enrichment analysis (GSEA) of RNAseq data from the TCGA PRAD cohort indicated that SRRT may play a potential role in regulating the expression of genes involved in prostate cancer aggressiveness. Conclusion: The current data identify the SRRT's potential role as a prognostic for lethal PCa, and further research is required to investigate its potential as a therapeutic target.

5.
PLoS One ; 18(4): e0284418, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37068084

RESUMEN

Brain cancers caused by malignant brain tumors are one of the most fatal cancer types with a low survival rate mostly due to the difficulties in early detection. Medical professionals therefore use various invasive and non-invasive methods for detecting and treating brain tumors at the earlier stages thus enabling early treatment. The main non-invasive methods for brain tumor diagnosis and assessment are brain imaging like computed tomography (CT), positron emission tomography (PET) and magnetic resonance imaging (MRI) scans. In this paper, the focus is on detection and segmentation of brain tumors from 2D and 3D brain MRIs. For this purpose, a complete automated system with a web application user interface is described which detects and segments brain tumors with more than 90% accuracy and Dice scores. The user can upload brain MRIs or can access brain images from hospital databases to check presence or absence of brain tumor, to check the existence of brain tumor from brain MRI features and to extract the tumor region precisely from the brain MRI using deep neural networks like CNN, U-Net and U-Net++. The web application also provides an option for entering feedbacks on the results of the detection and segmentation to allow healthcare professionals to add more precise information on the results that can be used to train the model for better future predictions and segmentations.


Asunto(s)
Neoplasias Encefálicas , Confianza , Humanos , Retroalimentación , Redes Neurales de la Computación , Radiofármacos , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos
6.
Med Biol Eng Comput ; 61(6): 1257-1297, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36707488

RESUMEN

The ongoing COVID-19 pandemic caused by the SARS-CoV-2 virus has already resulted in 6.6 million deaths with more than 637 million people infected after only 30 months since the first occurrences of the disease in December 2019. Hence, rapid and accurate detection and diagnosis of the disease is the first priority all over the world. Researchers have been working on various methods for COVID-19 detection and as the disease infects lungs, lung image analysis has become a popular research area for detecting the presence of the disease. Medical images from chest X-rays (CXR), computed tomography (CT) images, and lung ultrasound images have been used by automated image analysis systems in artificial intelligence (AI)- and machine learning (ML)-based approaches. Various existing and novel ML, deep learning (DL), transfer learning (TL), and hybrid models have been applied for detecting and classifying COVID-19, segmentation of infected regions, assessing the severity, and tracking patient progress from medical images of COVID-19 patients. In this paper, a comprehensive review of some recent approaches on COVID-19-based image analyses is provided surveying the contributions of existing research efforts, the available image datasets, and the performance metrics used in recent works. The challenges and future research scopes to address the progress of the fight against COVID-19 from the AI perspective are also discussed. The main objective of this paper is therefore to provide a summary of the research works done in COVID detection and analysis from medical image datasets using ML, DL, and TL models by analyzing their novelty and efficiency while mentioning other COVID-19-based review/survey researches to deliver a brief overview on the maximum amount of information on COVID-19-based existing researches.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , SARS-CoV-2 , Inteligencia Artificial , Pandemias , Aprendizaje Automático
7.
PLoS One ; 17(12): e0278487, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36548288

RESUMEN

Due to the severity and speed of spread of the ongoing Covid-19 pandemic, fast but accurate diagnosis of Covid-19 patients has become a crucial task. Achievements in this respect might enlighten future efforts for the containment of other possible pandemics. Researchers from various fields have been trying to provide novel ideas for models or systems to identify Covid-19 patients from different medical and non-medical data. AI-based researchers have also been trying to contribute to this area by mostly providing novel approaches of automated systems using convolutional neural network (CNN) and deep neural network (DNN) for Covid-19 detection and diagnosis. Due to the efficiency of deep learning (DL) and transfer learning (TL) models in classification and segmentation tasks, most of the recent AI-based researches proposed various DL and TL models for Covid-19 detection and infected region segmentation from chest medical images like X-rays or CT images. This paper describes a web-based application framework for Covid-19 lung infection detection and segmentation. The proposed framework is characterized by a feedback mechanism for self learning and tuning. It uses variations of three popular DL models, namely Mask R-CNN, U-Net, and U-Net++. The models were trained, evaluated and tested using CT images of Covid patients which were collected from two different sources. The web application provide a simple user friendly interface to process the CT images from various resources using the chosen models, thresholds and other parameters to generate the decisions on detection and segmentation. The models achieve high performance scores for Dice similarity, Jaccard similarity, accuracy, loss, and precision values. The U-Net model outperformed the other models with more than 98% accuracy.


Asunto(s)
COVID-19 , Confianza , Humanos , Retroalimentación , COVID-19/diagnóstico por imagen , Pandemias , Redes Neurales de la Computación
8.
Bioengineering (Basel) ; 10(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36671598

RESUMEN

The eye is generally considered to be the most important sensory organ of humans. Diseases and other degenerative conditions of the eye are therefore of great concern as they affect the function of this vital organ. With proper early diagnosis by experts and with optimal use of medicines and surgical techniques, these diseases or conditions can in many cases be either cured or greatly mitigated. Experts that perform the diagnosis are in high demand and their services are expensive, hence the appropriate identification of the cause of vision problems is either postponed or not done at all such that corrective measures are either not done or done too late. An efficient model to predict eye diseases using machine learning (ML) and ranker-based feature selection (r-FS) methods is therefore proposed which will aid in obtaining a correct diagnosis. The aim of this model is to automatically predict one or more of five common eye diseases namely, Cataracts (CT), Acute Angle-Closure Glaucoma (AACG), Primary Congenital Glaucoma (PCG), Exophthalmos or Bulging Eyes (BE) and Ocular Hypertension (OH). We have used efficient data collection methods, data annotations by professional ophthalmologists, applied five different feature selection methods, two types of data splitting techniques (train-test and stratified k-fold cross validation), and applied nine ML methods for the overall prediction approach. While applying ML methods, we have chosen suitable classic ML methods, such as Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), AdaBoost (AB), Logistic Regression (LR), k-Nearest Neighbour (k-NN), Bagging (Bg), Boosting (BS) and Support Vector Machine (SVM). We have performed a symptomatic analysis of the prominent symptoms of each of the five eye diseases. The results of the analysis and comparison between methods are shown separately. While comparing the methods, we have adopted traditional performance indices, such as accuracy, precision, sensitivity, F1-Score, etc. Finally, SVM outperformed other models obtaining the highest accuracy of 99.11% for 10-fold cross-validation and LR obtained 98.58% for the split ratio of 80:20.

9.
PLoS One ; 16(5): e0251703, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34032798

RESUMEN

Glaucoma is a leading cause of blindness worldwide whose detection is based on multiple factors, including measuring the cup to disc ratio, retinal nerve fiber layer and visual field defects. Advances in image processing and machine learning have allowed the development of automated approached for segmenting objects from fundus images. However, to build a robust system, a reliable ground truth dataset is required for proper training and validation of the model. In this study, we investigate the level of agreement in properly detecting the retinal disc in fundus images using an online portal built for such purposes. Two Doctors of Optometry independently traced the discs for 159 fundus images obtained from publicly available datasets using a purpose-built online portal. Additionally, we studied the effectiveness of ellipse fitting in handling misalignments in tracing. We measured tracing precision, interobserver variability, and average boundary distance between the results provided by ophthalmologists, and optometrist tracing. We also studied whether ellipse fitting has a positive or negative impact on properly detecting disc boundaries. The overall agreement between the optometrists in terms of locating the disc region in these images was 0.87. However, we found that there was a fair agreement on the disc border with kappa = 0.21. Disagreements were mainly in fundus images obtained from glaucomatous patients. The resulting dataset was deemed to be an acceptable ground truth dataset for training a validation of models for automatic detection of objects in fundus images.


Asunto(s)
Conjuntos de Datos como Asunto , Glaucoma/diagnóstico , Interpretación de Imagen Asistida por Computador/métodos , Internet , Disco Óptico/diagnóstico por imagen , Ceguera/etiología , Ceguera/prevención & control , Colaboración de las Masas , Fondo de Ojo , Glaucoma/complicaciones , Humanos , Aprendizaje Automático , Variaciones Dependientes del Observador , Optometristas/estadística & datos numéricos , Estudios de Validación como Asunto
10.
BMC Bioinformatics ; 22(1): 28, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482713

RESUMEN

BACKGROUND: Drug repositioning is an emerging approach in pharmaceutical research for identifying novel therapeutic potentials for approved drugs and discover therapies for untreated diseases. Due to its time and cost efficiency, drug repositioning plays an instrumental role in optimizing the drug development process compared to the traditional de novo drug discovery process. Advances in the genomics, together with the enormous growth of large-scale publicly available data and the availability of high-performance computing capabilities, have further motivated the development of computational drug repositioning approaches. More recently, the rise of machine learning techniques, together with the availability of powerful computers, has made the area of computational drug repositioning an area of intense activities. RESULTS: In this study, a novel framework SNF-NN based on deep learning is presented, where novel drug-disease interactions are predicted using drug-related similarity information, disease-related similarity information, and known drug-disease interactions. Heterogeneous similarity information related to drugs and disease is fed to the proposed framework in order to predict novel drug-disease interactions. SNF-NN uses similarity selection, similarity network fusion, and a highly tuned novel neural network model to predict new drug-disease interactions. The robustness of SNF-NN is evaluated by comparing its performance with nine baseline machine learning methods. The proposed framework outperforms all baseline methods ([Formula: see text] = 0.867, and [Formula: see text]=0.876) using stratified 10-fold cross-validation. To further demonstrate the reliability and robustness of SNF-NN, two datasets are used to fairly validate the proposed framework's performance against seven recent state-of-the-art methods for drug-disease interaction prediction. SNF-NN achieves remarkable performance in stratified 10-fold cross-validation with [Formula: see text] ranging from 0.879 to 0.931 and [Formula: see text] from 0.856 to 0.903. Moreover, the efficiency of SNF-NN is verified by validating predicted unknown drug-disease interactions against clinical trials and published studies. CONCLUSION: In conclusion, computational drug repositioning research can significantly benefit from integrating similarity measures in heterogeneous networks and deep learning models for predicting novel drug-disease interactions. The data and implementation of SNF-NN are available at http://pages.cpsc.ucalgary.ca/ tnjarada/snf-nn.php .


Asunto(s)
Biología Computacional , Reposicionamiento de Medicamentos , Preparaciones Farmacéuticas , Algoritmos , Quimioterapia , Redes Neurales de la Computación , Reproducibilidad de los Resultados
11.
J Cheminform ; 12(1): 46, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-33431024

RESUMEN

Drug repositioning is the process of identifying novel therapeutic potentials for existing drugs and discovering therapies for untreated diseases. Drug repositioning, therefore, plays an important role in optimizing the pre-clinical process of developing novel drugs by saving time and cost compared to the traditional de novo drug discovery processes. Since drug repositioning relies on data for existing drugs and diseases the enormous growth of publicly available large-scale biological, biomedical, and electronic health-related data along with the high-performance computing capabilities have accelerated the development of computational drug repositioning approaches. Multidisciplinary researchers and scientists have carried out numerous attempts, with different degrees of efficiency and success, to computationally study the potential of repositioning drugs to identify alternative drug indications. This study reviews recent advancements in the field of computational drug repositioning. First, we highlight different drug repositioning strategies and provide an overview of frequently used resources. Second, we summarize computational approaches that are extensively used in drug repositioning studies. Third, we present different computing and experimental models to validate computational methods. Fourth, we address prospective opportunities, including a few target areas. Finally, we discuss challenges and limitations encountered in computational drug repositioning and conclude with an outline of further research directions.

12.
Comput Med Imaging Graph ; 78: 101657, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31675645

RESUMEN

The term glaucoma refers to a group of heterogeneous diseases that cause the degeneration of retinal ganglion cells (RGCs). The degeneration of RGCs leads to two main issues: (i) structural changes to the optic nerve head as well as the nerve fiber layer, and (ii) simultaneous functional failure of the visual field. These two effects of glaucoma may lead to peripheral vision loss and, if the condition is left to progress it may eventually lead to blindness. No cure for glaucoma exists apart from early detection and treatment by optometrists and ophthalmologists. The degeneration of RGCs is normally detected from retinal images which are assessed by an expert. These retinal images also provide other vital information about the health of an eye. Thus, it is essential to develop automated techniques for extracting this information. The rapid development of digital images and computer vision techniques have increased the potential for analysis of eye health from images. This paper surveys current approaches to detect glaucoma from 2D and 3D images; both the limitations and possible future directions are highlighted. This study also describes the datasets used for retinal analysis along with existing evaluation algorithms. The main topics covered by this study may be enumerated as follows.


Asunto(s)
Glaucoma/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Conjuntos de Datos como Asunto , Humanos , Imagenología Tridimensional
13.
Sensors (Basel) ; 16(7)2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27428981

RESUMEN

Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on "Sensors for Entertainment", developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

14.
Curr Protein Pept Sci ; 17(1): 82-92, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26412791

RESUMEN

Metabolism is a set of fundamental processes that play important roles in a plethora of biological and medical contexts. It is understood that the topological information of reconstructed metabolic networks, such as modular organization, has crucial implications on biological functions. Recent interpretations of modularity in network settings provide a view of multiple network partitions induced by different resolution parameters. Here we ask the question: How do multiple network partitions affect the organization of metabolic networks? Since network motifs are often interpreted as the super families of evolved units, we further investigate their impact under multiple network partitions and investigate how the distribution of network motifs influences the organization of metabolic networks. We studied Homo sapiens, Saccharomyces cerevisiae and Escherichia coli metabolic networks; we analyzed the relationship between different community structures and motif distribution patterns. Further, we quantified the degree to which motifs participate in the modular organization of metabolic networks.


Asunto(s)
Redes y Vías Metabólicas , Modelos Biológicos , Algoritmos , Escherichia coli/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-24081267

RESUMEN

The propagation of shear-horizontal (SH) waves is studied for a functionally gradient magnetoelectric (ME) material. The material properties of the ME half-space are normal to the free surface. The ME open conditions are applied to the free surface. Dispersion relations are obtained in explicit form for different forms of the nonhomogeneities.

16.
Int J Data Min Bioinform ; 8(3): 247-81, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24417021

RESUMEN

The availability of enough samples for effective analysis and knowledge discovery has been a challenge in the research community, especially in the area of gene expression data analysis. Thus, the approaches being developed for data analysis have mostly suffered from the lack of enough data to train and test the constructed models. We argue that the process of sample generation could be successfully automated by employing some sophisticated machine learning techniques. An automated sample generation framework could successfully complement the actual sample generation from real cases. This argument is validated in this paper by describing a framework that integrates multiple models (perspectives) for sample generation. We illustrate its applicability for producing new gene expression data samples, a highly demanding area that has not received attention. The three perspectives employed in the process are based on models that are not closely related. The independence eliminates the bias of having the produced approach covering only certain characteristics of the domain and leading to samples skewed towards one direction. The first model is based on the Probabilistic Boolean Network (PBN) representation of the gene regulatory network underlying the given gene expression data. The second model integrates Hierarchical Markov Model (HIMM) and the third model employs a genetic algorithm in the process. Each model learns as much as possible characteristics of the domain being analysed and tries to incorporate the learned characteristics in generating new samples. In other words, the models base their analysis on domain knowledge implicitly present in the data itself. The developed framework has been extensively tested by checking how the new samples complement the original samples. The produced results are very promising in showing the effectiveness, usefulness and applicability of the proposed multi-model framework.


Asunto(s)
Inteligencia Artificial , Expresión Génica , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Cadenas de Markov
17.
Curr Protein Pept Sci ; 12(7): 602-13, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21827429

RESUMEN

As social network analysis is gaining popularity in modeling real world problems, the task of applying the social network model concepts and notions to biological data is still one of the most attractive research problems to be addressed. According, our work described in this paper focuses on a particular set of genes that reside on the community boundaries in gene co-expression networks. Stemmed from community mining problem in social networks, peripheries of communities (i.e., boundaries) can be used to aid certain biological analysis. The proposed method consists of three parts: 1) Finding communities of gene co-expression networks through clustering. 2) Analyzing stability of community structures by Monte Carlo method. 3) Designing of dynamic adoption of boundaries using geometric convexity. We validated our findings using breast cancer gene expression data from various studies. Our approach contributes to the new branch of applying social network mechanisms in biological data analysis, leading to new data mining strategies implied by witnessing social behaviors in gene expression analysis.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Algoritmos , Minería de Datos/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Modelos Genéticos
18.
Int J Data Min Bioinform ; 5(3): 332-50, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21805827

RESUMEN

Locating exceptional, abnormal or unusual trends in gene expression data to identifying disease biomarkers is the vital problem tackled in this paper. We developed a comprehensive framework that incorporates different perspectives each realised by an agent. Each agent applies its method to analyse the gene expression data and to come up with some candidate genes as potential cancer biomarkers. Further, gene enrichment, protein interaction, and miRNA regulation are given weight; they are used to confirm the discoveries by the major agents. We conducted experiments on two data sets; the obtained results are very encouraging with a high classification rate.


Asunto(s)
Algoritmos , Biomarcadores/análisis , Perfilación de la Expresión Génica/métodos , Expresión Génica , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA