Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 19(8): e0307376, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39197042

RESUMEN

Among the set of phenological traits featuring mangrove ecosystems, litterfall production stands out with marked intra-annual and longer-term variation. Furthermore, mangrove forests resilience is one of the most important ecological attribute, reconciling the juxtaposed terrestrial and marine environment such transitional systems occupy. However, world's mangroves are nowadays facing recurrent climatic events, reflected in anomalies depicted by major drivers, including temperature and precipitation. This physical-environmental setting may either constrain or favor overall forest productivity. A combination of time series analysis (spectral density and cross-correlation techniques) and statistical model fitting (General additive model) was implemented to explore trends in total litterfall of a well-developed mangrove forest in southeastern Gulf of Mexico (Celestun Lagoon, SE Mexico) and potential association with the varying behavior of temperature (°C) and precipitation (mm month-1), highlighting their anomalies. The results are consistent with a synchronous response between litterfall production and climatic variables (mean monthly temperature and total monthly precipitation). Concurrent peak litterfall production in Celestun lagoon with high temperatures and precipitation occurred during June and October, featuring a two-month time lag for the response time. More than half of the litterfall anomalies (53.5%) could be reflecting either multiple sources of climatic anomalies (maximum, minimum, and monthly average temperature and monthly total precipitation) or single point events (cyclone landfall). This relationship dynamics showed an interannual persistence (1999-2010). The structure portrayed by the litterfall time-series was not unequivocally related to climatic anomalies. Arguably, climatic anomalies behave with different intensities and even may exhibit complex interactions among them. The study of anomalies provides a baseline for a better grasp of: i) mangrove anomalies responses and ii) their vulnerability to these extremes.


Asunto(s)
Humedales , México , Temperatura , Clima , Estaciones del Año , Ecosistema , Cambio Climático , Lluvia
2.
Sci Total Environ ; 898: 165413, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429480

RESUMEN

The North Atlantic Basin (NAB) has seen an increase in the frequency and intensity of tropical cyclones since the 1980s, with record-breaking seasons in 2017 and 2020. However, little is known about how coastal ecosystems, particularly mangroves in the Gulf of Mexico and the Caribbean, respond to these new "climate normals" at regional and subregional scales. Wind speed, rainfall, pre-cyclone forest height, and hydro-geomorphology are known to influence mangrove damage and recovery following cyclones in the NAB. However, previous studies have focused on local-scale responses and individual cyclonic events. Here, we analyze 25 years (1996-2020) of mangrove vulnerability (damage after a cyclone) and 24 years (1996-2019) of short-term resilience (recovery after damage) for the NAB and subregions, using multi-annual, remote sensing-derived databases. We used machine learning to characterize the influence of 22 potential variables on mangrove responses, including human development and long-term climate trends. Our results document variability in the rates and drivers of mangrove vulnerability and resilience, highlighting hotspots of cyclone impacts, mangrove damage, and loss of resilience. Cyclone characteristics mainly drove vulnerability at the regional level. In contrast, resilience was driven by site-specific conditions, including long-term climate trends, pre-cyclone forest structure, soil organic carbon stock, and coastal development (i.e., proximity to human infrastructure). Coastal development is associated with both vulnerability and resilience at the subregional level. Further, we highlight that loss of resilience occurs mostly in areas experiencing long-term drought across the NAB. The impacts of increasing cyclone activity on mangroves and their coastal protection service must be framed in the context of compound climate change effects and continued coastal development. Our work offers descriptive and spatial information to support the restoration and adaptive management of NAB mangroves, which need adequate health, structure, and density to protect coasts and serve as Nature-based Solutions against climate change and extreme weather events.

4.
Carbon Balance Manag ; 12(1): 6, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28413850

RESUMEN

BACKGROUND: Human-caused disturbance to tropical rainforests-such as logging and fire-causes substantial losses of carbon stocks. This is a critical issue to be addressed in the context of policy discussions to implement REDD+. This work reviews current scientific knowledge about the temporal dynamics of degradation-induced carbon emissions to describe common patterns of emissions from logging and fire across tropical forest regions. Using best available information, we: (i) develop short-term emissions factors (per area) for logging and fire degradation scenarios in tropical forests; and (ii) describe the temporal pattern of degradation emissions and recovery trajectory post logging and fire disturbance. RESULTS: Average emissions from aboveground biomass were 19.9 MgC/ha for logging and 46.0 MgC/ha for fire disturbance, with an average period of study of 3.22 and 2.15 years post-disturbance, respectively. Longer-term studies of post-logging forest recovery suggest that biomass accumulates to pre-disturbance levels within a few decades. Very few studies exist on longer-term (>10 years) effects of fire disturbance in tropical rainforests, and recovery patterns over time are unknown. CONCLUSIONS: This review will aid in understanding whether degradation emissions are a substantial component of country-level emissions portfolios, or whether these emissions would be offset by forest recovery and regeneration.

5.
Glob Chang Biol ; 23(9): 3581-3599, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28295834

RESUMEN

Wetlands are important providers of ecosystem services and key regulators of climate change. They positively contribute to global warming through their greenhouse gas emissions, and negatively through the accumulation of organic material in histosols, particularly in peatlands. Our understanding of wetlands' services is currently constrained by limited knowledge on their distribution, extent, volume, interannual flood variability and disturbance levels. We present an expert system approach to estimate wetland and peatland areas, depths and volumes, which relies on three biophysical indices related to wetland and peat formation: (1) long-term water supply exceeding atmospheric water demand; (2) annually or seasonally water-logged soils; and (3) a geomorphological position where water is supplied and retained. Tropical and subtropical wetlands estimates reach 4.7 million km2 (Mkm2 ). In line with current understanding, the American continent is the major contributor (45%), and Brazil, with its Amazonian interfluvial region, contains the largest tropical wetland area (800,720 km2 ). Our model suggests, however, unprecedented extents and volumes of peatland in the tropics (1.7 Mkm2 and 7,268 (6,076-7,368) km3 ), which more than threefold current estimates. Unlike current understanding, our estimates suggest that South America and not Asia contributes the most to tropical peatland area and volume (ca. 44% for both) partly related to some yet unaccounted extended deep deposits but mainly to extended but shallow peat in the Amazon Basin. Brazil leads the peatland area and volume contribution. Asia hosts 38% of both tropical peat area and volume with Indonesia as the main regional contributor and still the holder of the deepest and most extended peat areas in the tropics. Africa hosts more peat than previously reported but climatic and topographic contexts leave it as the least peat-forming continent. Our results suggest large biases in our current understanding of the distribution, area and volumes of tropical peat and their continental contributions.


Asunto(s)
Cambio Climático , Sistemas Especialistas , Humedales , África , Asia , Brasil , Indonesia
6.
Glob Chang Biol ; 22(12): 3859-3864, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27185416

RESUMEN

More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2 e yr-1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.


Asunto(s)
Agricultura , Cambio Climático , Gases/análisis , Efecto Invernadero/prevención & control , Carbono/análisis , Efecto Invernadero/legislación & jurisprudencia , Cooperación Internacional , Metano/análisis , Política Pública , Suelo/química
7.
Carbon Balance Manag ; 6(1): 13, 2011 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-22115360

RESUMEN

Measuring forest degradation and related forest carbon stock changes is more challenging than measuring deforestation since degradation implies changes in the structure of the forest and does not entail a change in land use, making it less easily detectable through remote sensing. Although we anticipate the use of the IPCC guidance under the United Framework Convention on Climate Change (UNFCCC), there is no one single method for monitoring forest degradation for the case of REDD+ policy. In this review paper we highlight that the choice depends upon a number of factors including the type of degradation, available historical data, capacities and resources, and the potentials and limitations of various measurement and monitoring approaches. Current degradation rates can be measured through field data (i.e. multi-date national forest inventories and permanent sample plot data, commercial forestry data sets, proxy data from domestic markets) and/or remote sensing data (i.e. direct mapping of canopy and forest structural changes or indirect mapping through modelling approaches), with the combination of techniques providing the best options. Developing countries frequently lack consistent historical field data for assessing past forest degradation, and so must rely more on remote sensing approaches mixed with current field assessments of carbon stock changes. Historical degradation estimates will have larger uncertainties as it will be difficult to determine their accuracy. However improving monitoring capacities for systematic forest degradation estimates today will help reduce uncertainties even for historical estimates.

8.
Biol Rev Camb Philos Soc ; 86(2): 457-74, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20849493

RESUMEN

Developing high-quality scientific research will be most effective if research communities with diverse skills and interests are able to share information and knowledge, are aware of the major challenges across disciplines, and can exploit economies of scale to provide robust answers and better inform policy. We evaluate opportunities and challenges facing the development of a more interactive research environment by developing an interdisciplinary synthesis of research on a single geographic region. We focus on the Amazon as it is of enormous regional and global environmental importance and faces a highly uncertain future. To take stock of existing knowledge and provide a framework for analysis we present a set of mini-reviews from fourteen different areas of research, encompassing taxonomy, biodiversity, biogeography, vegetation dynamics, landscape ecology, earth-atmosphere interactions, ecosystem processes, fire, deforestation dynamics, hydrology, hunting, conservation planning, livelihoods, and payments for ecosystem services. Each review highlights the current state of knowledge and identifies research priorities, including major challenges and opportunities. We show that while substantial progress is being made across many areas of scientific research, our understanding of specific issues is often dependent on knowledge from other disciplines. Accelerating the acquisition of reliable and contextualized knowledge about the fate of complex pristine and modified ecosystems is partly dependent on our ability to exploit economies of scale in shared resources and technical expertise, recognise and make explicit interconnections and feedbacks among sub-disciplines, increase the temporal and spatial scale of existing studies, and improve the dissemination of scientific findings to policy makers and society at large. Enhancing interaction among research efforts is vital if we are to make the most of limited funds and overcome the challenges posed by addressing large-scale interdisciplinary questions. Bringing together a diverse scientific community with a single geographic focus can help increase awareness of research questions both within and among disciplines, and reveal the opportunities that may exist for advancing acquisition of reliable knowledge. This approach could be useful for a variety of globally important scientific questions.


Asunto(s)
Ecosistema , Fenómenos Geológicos , Animales , Biodiversidad , Clima , Conservación de los Recursos Naturales , Incendios , Agricultura Forestal , Geografía , Humanos , Plantas/clasificación , Ríos , Sociología , América del Sur , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA