Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 10(6): e0341922, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36342282

RESUMEN

Cancer pagurus is highly susceptible to shell disease syndrome. However, little is known about concomitant changes in the epibacterial community. We compared the bacterial communities of black spot affected and nonaffected areas of the carapace by amplicon sequencing of 16S rRNA genes and 16S rRNA. Within each spot, bacterial communities of affected areas were less diverse compared to communities from nonaffected areas. Communities of different affected spots were, however, more divergent from each other, compared to those of different nonaffected areas. This indicates a reduced and shifted microbial community composition caused by the black spot disease. Different communities found in black spots likely indicate different stages of the disease. In affected areas, Flavobacteriaceae rose to one of the most abundant and active families due to the increase of Aquimarina spp., suggesting a significant role in shell disease syndrome. We isolated 75 bacterial strains from diseased and healthy areas, which are primarily affiliated with Proteobacteria and Bacteroidetes, reflecting the dominant phyla detected by amplicon sequencing. The ability to degrade chitin was mainly found for Gammaproteobacteria and Aquimarina spp. within the Flavobacteriia, while the ability to use N-acetylglucosamine, the monomer of the polysaccharide chitin, was observed for most isolates, including many Alphaproteobacteria. One-third of the isolates, including most Aquimarina spp., showed antagonistic properties, indicating a high potential for interactions between the bacterial populations. The combination of bacterial community analysis and the physiological properties of the isolates provided insights into a functional complex epibacterial community on the carapace of C. pagurus. IMPORTANCE In recent years, shell disease syndrome has been detected for several ecologically and economically important crustacean species. Large proportions of populations are affected, e.g., >60% of the widely distributed species Cancer pagurus in different North Sea areas. Bacteria play a significant role in the development of different forms of shell disease, all characterized by microbial chitinolytic degradation of the outer shell. By comparing the bacterial communities of healthy and diseased areas of the shell of C. pagurus, we demonstrated that the disease causes a reduced bacterial diversity within affected areas, a phenomenon co-occurring also with many other diseases. Furthermore, the community composition dramatically changed with some taxa rising to high relative abundances and showing increased activity, indicating strong participation in shell disease. Characterization of bacterial isolates obtained from affected and nonaffected spots provided deeper insights into their physiological properties and thus the possible role within the microbiome.


Asunto(s)
Braquiuros , Neoplasias , Humanos , Animales , Braquiuros/genética , Braquiuros/metabolismo , Braquiuros/microbiología , Exoesqueleto , ARN Ribosómico 16S/genética , Bacterias , Quitina/metabolismo
2.
Arch Dis Child Fetal Neonatal Ed ; 107(5): 520-526, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35078779

RESUMEN

BACKGROUND: MRI allows a detailed assessment of brain structures in preterm infants, outperforming cranial ultrasound. Neonatal MR-based brain volumes of preterm infants could serve as objective, quantitative and reproducible surrogate parameters of early brain development. To date, there are no reference values for preterm infants' brain volumes at term-equivalent age. OBJECTIVE: Systematic review of the literature to determine reference ranges for MRI-based brain volumes of very preterm infants at term-equivalent age. METHODS: PubMed Database was searched on 6 April 2020 for studies reporting MR-based brain volumes on representative unselected populations of very preterm and/or very low birthweight infants examined at term equivalent age (defined as 37-42 weeks mean postmenstrual age at MRI). Analyses were limited to volumetric parameters reported in >3 studies. Weighted mean volumes and SD were both calculated and simulated for each parameter. RESULTS: An initial 367 publications were identified. Following application of exclusion criteria, 13 studies from eight countries were included for analysis, yielding four parameters. Weighted mean total brain volume was 379 mL (SD 72 mL; based on n=756). Cerebellar volume was 21 mL (6 mL; n=791), cortical grey matter volume 140 mL (47 mL; n=572) and weighted mean volume of unmyelinated white matter was 195 mL (38 mL; n=499). CONCLUSION: This meta-analysis reports pooled data on several brain and cerebellar volumes which can serve as reference for future studies assessing MR-based volumetric parameters as a surrogate outcome for neurodevelopment and for the interpretation of individual or cohort MRI-based volumetric findings.


Asunto(s)
Recien Nacido Prematuro , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Edad Gestacional , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA