Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Front Public Health ; 12: 1402998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145155

RESUMEN

While maintaining a robust reserve of daily necessities is crucial for urban safety, but there is a lack of scientific basis for determining "what to store" and "how much to store." This paper address this gap by classifying and summarizing the emergency materials of urban necessities in Shanghai, and establishing a corresponding reserve list. By constructing an index model of daily necessities reserve, this paper provides a scientific foundation for "what to store." Additionally, the reserve levels of different types of daily necessities are classified and managed, the reserve model of emergency daily necessities is constructed. This approach clarifies the scientific basis for "how much to store," overcoming the problems of subjective factors interference and the potential mismatch between the results of objective weighting method and reality. Furthermore, to better cope with emergencies, countermeasures and suggestions are put forward: optimizing the material structure of emergency reserves, managing the material reserves at different levels, scientifically and reasonably planning the amount of emergency materials, and reducing the cost of reserves and improve the efficiency of emergency reserves.


Asunto(s)
Urgencias Médicas , Humanos , China , Ciudades , Población Urbana/estadística & datos numéricos
2.
Immunopharmacol Immunotoxicol ; 41(2): 277-284, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31084401

RESUMEN

Objectives: Gouty arthritis is caused by the deposition of monosodium urate (MSU) crystals in joints, which is associated with the rise of serum urate content. This study aims to investigate the therapeutic effect of Madecassoside on gouty arthritis and hyperuricemia. Methods: DBA/1 mice were intradermally injected with MSU to stimulate joint inflammation or intraperitoneally injected with MSU to trigger peritonitis. Moreover, ICR mice were exposed to potassium oxonate to stimulate hyperuricemia. Results: Madecassoside repressed MSU-triggered pad swelling, joint 99mTc uptake, and joint inflammation in DBA/1 mice with gouty arthritis. Neutrophil infiltration and IL-1ß & IL-6 & MCP-1 secretion was also alleviated in lavage fluids from DBA/1 mice with peritonitis due to Madecassoside treatment. Furthermore, Madecassoside decreased MSU-induced neutrophil cytosolic factor 1, caspase-1 and NLRP3 expression in mice with peritoneal inflammation. In hyperuricemic mice, Madecassoside improved renal dysfunction. Serum uric acid, BUN, and creatinine were down-regulated by Madecassoside. Conclusion: These findings indicate that Madecassoside has potential to ameliorate inflammation in both acute gouty arthritis model and peritonitis model, probably via regulating IL-1ß and NLRP3 expression. Practical point: Madecassoside also exhibited a urate-lowering effect and a renal protective effect in hyperuricemic mice.


Asunto(s)
Antiinflamatorios/farmacología , Artritis Gotosa/tratamiento farmacológico , Hiperuricemia/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Triterpenos/farmacología , Animales , Artritis Gotosa/inducido químicamente , Artritis Gotosa/inmunología , Citocinas/inmunología , Hiperuricemia/inducido químicamente , Hiperuricemia/inmunología , Hiperuricemia/patología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Masculino , Ratones Endogámicos ICR , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/patología , Peritonitis/inducido químicamente , Peritonitis/inmunología , Peritonitis/patología , Ácido Úrico/toxicidad , omegacloroacetofenona
3.
Int Immunopharmacol ; 68: 74-80, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30612087

RESUMEN

Osteoarthritis (OA) is the most common inflammatory joint disease that is mainly characterized by articular cartilage destruction. Forkhead box M1 (FOXM1) is a transcription factor that acts as a critical mediator of inflammatory response. However, the role of FOXM1 in OA has not been investigated. Interleukin (IL)-1ß is a major proinflammatory cytokine, which is associated with cartilage destruction in the pathophysiology of OA. In the present study, we used IL-1ß to stimulate chondrocytes for the establishment of OA in vitro model. We found that FOXM1 was up-regulated in IL-1ß-induced chondrocytes. Knockdown of FOXM1 attenuated IL-1ß-caused decrease in cell viability. Knockdown of FOXM1 suppressed the IL-1ß-induced production of inflammatory cytokines including tumor necrosis factor (TNF)-α, and IL-6. Besides, several inflammatory mediators, such as nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthases (iNOS), and cyclooxygenase-2 (COX-2) were also repressed by knockdown of FOXM1. FOXM1 silencing also inhibited the production of matrix metalloproteinases (MMPs) including MMP-3 and MMP-13. Furthermore, we found that knockdown of FOXM1 blocked the IL-1ß-induced NF-κB activation in chondrocytes. These findings indicated that FOXM1 might play an important role in the pathogenesis of OA, suggesting that FOXM1 might be a potential therapeutic target for the treatment of OA.


Asunto(s)
Condrocitos/inmunología , Citocinas/inmunología , Proteína Forkhead Box M1/inmunología , Osteoartritis/inmunología , Células Cultivadas , Proteína Forkhead Box M1/genética , Silenciador del Gen , Humanos , FN-kappa B/inmunología , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA