Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Neurophysiol Clin ; 54(6): 103012, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278041

RESUMEN

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex (M1) at high frequency (HF) is an effective treatment of neuropathic pain. The classical HF-rTMS protocol (CHF-rTMS) includes a daily session for one week as an induction phase of treatment followed by more spaced sessions. Another type of protocol without an induction phase and based solely on spaced sessions of HF-rTMS (SHF-rTMS) has also been shown to produce neuropathic pain relief. However, CHF-rTMS and SHF-rTMS of M1 have never been compared regarding their analgesic potential. Another type of rTMS paradigm, called accelerated intermittent theta burst stimulation (ACC-iTBS), has recently been proposed for the treatment of depression, the other clinical condition for which HF-rTMS is proposed as an effective therapeutic strategy. ACC-iTBS combines a high number of pulses delivered in short sessions grouped into a few days of stimulation. This type of protocol has never been applied to M1 for the treatment of pain. METHODS/DESIGN: The objective of this single-centre randomized study is to compare the efficacy of three different rTMS protocols for the treatment of chronic neuropathic pain: CHF-rTMS, SHF-rTMS, and ACC-iTBS. The CHF-rTMS will consists of 10 stimulation sessions, including 5 daily sessions of 10Hz-rTMS (3,000 pulses per session) over one week, then one session per week for 5 weeks, for a total of 30,000 pulses delivered in 10 stimulation days. The SHF-rTMS protocol will only include 4 sessions of 20Hz-rTMS (1,600 pulses per session), one every 15 days, for a total of 6,400 pulses delivered in 4 stimulation days. The ACC-iTBS protocol will comprise 5 sessions of iTBS (600 pulses per session) completed in half a day for 2 consecutive days, repeated 5 weeks later, for a total of 30,000 pulses delivered in 4 stimulation days. Thus, CHF-rTMS and ACC-iTBS protocols will share a higher total number of TMS pulses (30,000 pulses) compared to SHF-rTMS protocol (6,400 pulses), while CHF-rTMS protocol will include a higher number of stimulation days (10 days) compared to ACC-iTBS and SHF-rTMS protocols (4 days). In all protocols, the M1 target will be defined in the same way and stimulated at the same intensity using a navigated rTMS (nTMS) procedure. The evaluation will be based on clinical outcomes with various scales and questionnaires assessed every week, from two weeks before the 7-week period of therapeutic stimulation until 4 weeks after. Additionally, three sets of neurophysiological outcomes (resting-state electroencephalography (EEG), nTMS-EEG recordings, and short intracortical inhibition measurement with threshold tracking method) will be assessed the week before and after the 7-week period of therapeutic stimulation. DISCUSSION: This study will make it possible to compare the analgesic efficacy of the CHF-rTMS and SHF-rTMS protocols and to appraise that of the ACC-iTBS protocol for the first time. This study will also make it possible to determine the respective influence of the total number of pulses and days of stimulation delivered to M1 on the extent of pain relief. Thus, if their analgesic efficacy is not inferior to that of CHF-rTMS, SHF-rTMS and especially the new ACC-iTBS protocol could be an optimal compromise of a more easy-to-perform rTMS protocol for the treatment of patients with chronic neuropathic pain.

3.
Commun Biol ; 7(1): 946, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103539

RESUMEN

Consciousness has been proposed to be supported by electrophysiological patterns poised at criticality, a dynamical regime which exhibits adaptive computational properties, maximally complex patterns and divergent sensitivity to perturbation. Here, we investigate dynamical properties of the resting-state electroencephalogram (EEG) of healthy subjects undergoing general anesthesia with propofol, xenon or ketamine. Importantly, all participants were unresponsive under anesthesia, while consciousness was retained only during ketamine anesthesia (in the form of vivid dreams), enabling an experimental dissociation between unresponsiveness and unconsciousness. For each condition, we measure (i) avalanche criticality, (ii) chaoticity, and (iii) criticality-related metrics, revealing that states of unconsciousness are characterized by a distancing from both avalanche criticality and the edge of chaos. We then ask whether these same dynamical properties are predictive of the perturbational complexity index (PCI), a TMS-based measure that has shown remarkably high sensitivity in detecting consciousness independently of behavior. We successfully predict individual subjects' PCI values with considerably high accuracy from resting-state EEG dynamical properties alone. Our results establish a firm link between perturbational complexity and criticality, and provide further evidence that criticality is a necessary condition for the emergence of consciousness.


Asunto(s)
Estado de Conciencia , Electroencefalografía , Inconsciencia , Humanos , Inconsciencia/inducido químicamente , Inconsciencia/fisiopatología , Masculino , Adulto , Femenino , Estado de Conciencia/efectos de los fármacos , Estado de Conciencia/fisiología , Ketamina/farmacología , Propofol/farmacología , Adulto Joven , Anestesia General
4.
Nat Commun ; 15(1): 7207, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174560

RESUMEN

By connecting old and recent notions, different spatial scales, and research domains, we introduce a novel framework on the consequences of brain injury focusing on a key role of slow waves. We argue that the long-standing finding of EEG slow waves after brain injury reflects the intrusion of sleep-like cortical dynamics during wakefulness; we illustrate how these dynamics are generated and how they can lead to functional network disruption and behavioral impairment. Finally, we outline a scenario whereby post-injury slow waves can be modulated to reawaken parts of the brain that have fallen asleep to optimize rehabilitation strategies and promote recovery.


Asunto(s)
Lesiones Encefálicas , Electroencefalografía , Sueño , Vigilia , Vigilia/fisiología , Humanos , Lesiones Encefálicas/fisiopatología , Sueño/fisiología , Corteza Cerebral/fisiopatología , Animales , Encéfalo/fisiopatología , Red Nerviosa/fisiopatología
6.
Hum Brain Mapp ; 45(6): e26679, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647038

RESUMEN

Temporal dynamics of local cortical rhythms during acute pain remain largely unknown. The current study used a novel approach based on transcranial magnetic stimulation combined with electroencephalogram (TMS-EEG) to investigate evoked-oscillatory cortical activity during acute pain. Motor (M1) and dorsolateral prefrontal cortex (DLPFC) were probed by TMS, respectively, to record oscillatory power (event-related spectral perturbation and relative spectral power) and phase synchronization (inter-trial coherence) by 63 EEG channels during experimentally induced acute heat pain in 24 healthy participants. TMS-EEG was recorded before, during, and after noxious heat (acute pain condition) and non-noxious warm (Control condition), delivered in a randomized sequence. The main frequency bands (α, ß1, and ß2) of TMS-evoked potentials after M1 and DLPFC stimulation were recorded close to the TMS coil and remotely. Cold and heat pain thresholds were measured before TMS-EEG. Over M1, acute pain decreased α-band oscillatory power locally and α-band phase synchronization remotely in parietal-occipital clusters compared with non-noxious warm (all p < .05). The remote (parietal-occipital) decrease in α-band phase synchronization during acute pain correlated with the cold (p = .001) and heat pain thresholds (p = .023) and to local (M1) α-band oscillatory power decrease (p = .024). Over DLPFC, acute pain only decreased ß1-band power locally compared with non-noxious warm (p = .015). Thus, evoked-oscillatory cortical activity to M1 stimulation is reduced by acute pain in central and parietal-occipital regions and correlated with pain sensitivity, in contrast to DLPFC, which had only local effects. This finding expands the significance of α and ß band oscillations and may have relevance for pain therapies.


Asunto(s)
Dolor Agudo , Electroencefalografía , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Masculino , Femenino , Dolor Agudo/fisiopatología , Dolor Agudo/terapia , Adulto , Adulto Joven , Electroencefalografía/métodos , Umbral del Dolor/fisiología , Calor , Corteza Motora/fisiopatología , Corteza Motora/fisiología , Corteza Prefontal Dorsolateral/fisiología , Corteza Prefontal Dorsolateral/fisiopatología
7.
Eur J Neurosci ; 59(5): 934-947, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38440949

RESUMEN

The analysis of spontaneous electroencephalogram (EEG) is a cornerstone in the assessment of patients with disorders of consciousness (DoC). Although preserved EEG patterns are highly suggestive of consciousness even in unresponsive patients, moderately or severely abnormal patterns are difficult to interpret. Indeed, growing evidence shows that consciousness can be present despite either large delta or reduced alpha activity in spontaneous EEG. Quantifying the complexity of EEG responses to direct cortical perturbations (perturbational complexity index [PCI]) may complement the observational approach and provide a reliable assessment of consciousness even when spontaneous EEG features are inconclusive. To seek empirical evidence of this hypothesis, we compared PCI with EEG spectral measures in the same population of minimally conscious state (MCS) patients (n = 40) hospitalized in rehabilitation facilities. We found a remarkable variability in spontaneous EEG features across MCS patients as compared with healthy controls: in particular, a pattern of predominant delta and highly reduced alpha power-more often observed in vegetative state/unresponsive wakefulness syndrome (VS/UWS) patients-was found in a non-negligible number of MCS patients. Conversely, PCI values invariably fell above an externally validated empirical cutoff for consciousness in all MCS patients, consistent with the presence of clearly discernible, albeit fleeting, behavioural signs of awareness. These results confirm that, in some MCS patients, spontaneous EEG rhythms may be inconclusive about the actual capacity for consciousness and suggest that a perturbational approach can effectively compensate for this pitfall with practical implications for the individual patient's stratification and tailored rehabilitation.


Asunto(s)
Electroencefalografía , Estado Vegetativo Persistente , Humanos , Estado Vegetativo Persistente/diagnóstico , Electroencefalografía/métodos , Estado de Conciencia , Vigilia/fisiología , Trastornos de la Conciencia/diagnóstico
8.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38352535

RESUMEN

Cortical stimulation with single pulses is a common technique in clinical practice and research. However, we still do not understand the extent to which it engages subcortical circuits which contribute to the associated evoked potentials (EPs). Here we find that cortical stimulation generates remarkably similar EPs in humans and mice, with a late component similarly modulated by the subject's behavioral state. We optogenetically dissect the underlying circuit in mice, demonstrating that the late component of these EPs is caused by a thalamic hyperpolarization and rebound. The magnitude of this late component correlates with the bursting frequency and synchronicity of thalamic neurons, modulated by the subject's behavioral state. A simulation of the thalamo-cortical circuit highlights that both intrinsic thalamic currents as well as cortical and thalamic GABAergic neurons contribute to this response profile. We conclude that the cortical stimulation engages cortico-thalamo-cortical circuits highly preserved across different species and stimulation modalities.

9.
Eur J Neurosci ; 59(5): 860-873, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37077023

RESUMEN

The clinical assessment of patients with disorders of consciousness (DoC) relies on the observation of behavioural responses to standardised sensory stimulation. However, several medical comorbidities may directly impair the production of reproducible and appropriate responses, thus reducing the sensitivity of behaviour-based diagnoses. One such comorbidity is akinetic mutism (AM), a rare neurological syndrome characterised by the inability to initiate volitional motor responses, sometimes associated with clinical presentations that overlap with those of DoC. In this paper, we describe the case of a patient with large bilateral mesial frontal lesions, showing prolonged behavioural unresponsiveness and severe disorganisation of electroencephalographic (EEG) background, compatible with a vegetative state/unresponsive wakefulness syndrome (VS/UWS). By applying an unprecedented multimodal battery of advanced imaging and electrophysiology-based techniques (AIE) encompassing spontaneous EEG, evoked potentials, event-related potentials, transcranial magnetic stimulation combined with EEG and structural and functional MRI, we provide the following: (i) a demonstration of the preservation of consciousness despite unresponsiveness in the context of AM, (ii) a plausible neurophysiological explanation for behavioural unresponsiveness and its subsequent recovery during rehabilitation stay and (iii) novel insights into the relationships between DoC, AM and parkinsonism. The present case offers proof-of-principle evidence supporting the clinical utility of a multimodal hierarchical workflow that combines AIEs to detect covert signs of consciousness in unresponsive patients.


Asunto(s)
Mutismo Acinético , Terapia por Estimulación Eléctrica , Humanos , Mutismo Acinético/diagnóstico , Inconsciencia , Estado de Conciencia , Electroencefalografía
10.
bioRxiv ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37994368

RESUMEN

Consciousness has been proposed to be supported by electrophysiological patterns poised at criticality, a dynamical regime which exhibits adaptive computational properties, maximally complex patterns and divergent sensitivity to perturbation. Here, we investigated dynamical properties of the resting-state electroencephalogram of healthy subjects undergoing general anesthesia with propofol, xenon or ketamine. We then studied the relation of these dynamic properties with the perturbational complexity index (PCI), which has shown remarkably high sensitivity in detecting consciousness independent of behavior. All participants were unresponsive under anesthesia, while consciousness was retained only during ketamine anesthesia (in the form of vivid dreams)., enabling an experimental dissociation between unresponsiveness and unconsciousness. We estimated (i) avalanche criticality, (ii) chaoticity, and (iii) criticality-related measures, and found that states of unconsciousness were characterized by a distancing from both the edge of activity propagation and the edge of chaos. We were then able to predict individual subjects' PCI (i.e., PCImax) with a mean absolute error below 7%. Our results establish a firm link between the PCI and criticality and provide further evidence for the role of criticality in the emergence of consciousness.

11.
Neurocrit Care ; 39(3): 578-585, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37606737

RESUMEN

BACKGROUND: Electroencephalography (EEG) has long been recognized as an important tool in the investigation of disorders of consciousness (DoC). From inspection of the raw EEG to the implementation of quantitative EEG, and more recently in the use of perturbed EEG, it is paramount to providing accurate diagnostic and prognostic information in the care of patients with DoC. However, a nomenclature for variables that establishes a convention for naming, defining, and structuring data for clinical research variables currently is lacking. As such, the Neurocritical Care Society's Curing Coma Campaign convened nine working groups composed of experts in the field to construct common data elements (CDEs) to provide recommendations for DoC, with the main goal of facilitating data collection and standardization of reporting. This article summarizes the recommendations of the electrophysiology DoC working group. METHODS: After assessing previously published pertinent CDEs, we developed new CDEs and categorized them into "disease core," "basic," "supplemental," and "exploratory." Key EEG design elements, defined as concepts that pertained to a methodological parameter relevant to the acquisition, processing, or analysis of data, were also included but were not classified as CDEs. RESULTS: After identifying existing pertinent CDEs and developing novel CDEs for electrophysiology in DoC, variables were organized into a framework based on the two primary categories of resting state EEG and perturbed EEG. Using this categorical framework, two case report forms were generated by the working group. CONCLUSIONS: Adherence to the recommendations outlined by the electrophysiology working group in the resting state EEG and perturbed EEG case report forms will facilitate data collection and sharing in DoC research on an international level. In turn, this will allow for more informed and reliable comparison of results across studies, facilitating further advancement in the realm of DoC research.


Asunto(s)
Investigación Biomédica , Elementos de Datos Comunes , Humanos , Trastornos de la Conciencia/diagnóstico , Trastornos de la Conciencia/terapia , Recolección de Datos , Electrofisiología
12.
Neuroimage ; 277: 120264, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37399931

RESUMEN

During development, the brain undergoes radical structural and functional changes following a posterior-to-anterior gradient, associated with profound changes of cortical electrical activity during both wakefulness and sleep. However, a systematic assessment of the developmental effects on aperiodic EEG activity maturation across vigilance states is lacking, particularly regarding its topographical aspects. Here, in a population of 160 healthy infants, children and teenagers (from 2 to 17 years, 10 subjects for each year), we investigated the development of aperiodic EEG activity in wakefulness and sleep. Specifically, we parameterized the shape of the aperiodic background of the EEG Power Spectral Density (PSD) by means of the spectral exponent and offset; the exponent reflects the rate of exponential decay of power over increasing frequencies and the offset reflects an estimate of the y-intercept of the PSD. We found that sleep and development caused the EEG-PSD to rotate over opposite directions: during wakefulness the PSD showed a flatter decay and reduced offset over development, while during sleep it showed a steeper decay and a higher offset as sleep becomes deeper. During deep sleep (N2, N3) only the spectral offset decreased over age, indexing a broad-band voltage reduction. As a result, the difference between values in deep sleep and those in both light sleep (N1) and wakefulness increased with age, suggesting a progressive differentiation of wakefulness from sleep EEG activity, most prominent over the frontal regions, the latest to complete maturation. Notably, the broad-band spectral exponent values during deep sleep stages were entirely separated from wakefulness values, consistently across developmental ages and in line with previous findings in adults. Concerning topographical development, the location showing the steepest PSD decay and largest offset shifted from posterior to anterior regions with age. This shift, particularly evident during deep sleep, paralleled the migration of sleep slow wave activity and was consistent with neuroanatomical and cognitive development. Overall, aperiodic EEG activity distinguishes wakefulness from sleep regardless of age; while, during development, it reveals a postero-anterior topographical maturation and a progressive differentiation of wakefulness from sleep. Our study could help to interpret changes due to pathological conditions and may elucidate the neurophysiological processes underlying the development of wakefulness and sleep.


Asunto(s)
Sueño , Vigilia , Adulto , Niño , Lactante , Adolescente , Humanos , Vigilia/fisiología , Sueño/fisiología , Electroencefalografía , Fases del Sueño/fisiología , Encéfalo/fisiología
13.
Cereb Cortex ; 33(18): 9986-9996, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37522261

RESUMEN

Pain-related depression of corticomotor excitability has been explored using transcranial magnetic stimulation-elicited motor-evoked potentials. Transcranial magnetic stimulation-electroencephalography now enables non-motor area cortical excitability assessments, offering novel insights into cortical excitability changes during pain states. Here, pain-related cortical excitability changes were explored in the dorsolateral prefrontal cortex and primary motor cortex (M1). Cortical excitability was recorded in 24 healthy participants before (Baseline), during painful heat (Acute Pain), and non-noxious warm (Warm) stimulation at the right forearm in a randomized sequence, followed by a pain-free stimulation measurement. Local cortical excitability was assessed as the peak-to-peak amplitude of early transcranial magnetic stimulation evoked potential, whereas global-mean field power measured the global excitability. Relative to the Baseline, Acute Pain decreased the peak-to-peak amplitude in M1 and dorsolateral prefrontal cortex compared with Warm (both P < 0.05). A reduced global-mean field power was only found in M1 during Acute Pain compared with Warm (P = 0.003). Participants with the largest reduction in local cortical excitability under Acute Pain showed a negative correlation between dorsolateral prefrontal cortex and M1 local cortical excitability (P = 0.006). Acute experimental pain drove differential pain-related effects on local and global cortical excitability changes in motor and non-motor areas at a group level while also revealing different interindividual patterns of cortical excitability changes, which can be explored when designing personalized treatment plans.


Asunto(s)
Dolor Agudo , Corteza Motora , Humanos , Corteza Motora/fisiología , Potenciales Evocados Motores/fisiología , Estimulación Magnética Transcraneal , Dimensión del Dolor , Electroencefalografía
14.
Neurocrit Care ; 38(3): 584-590, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37029315

RESUMEN

Early reemergence of consciousness predicts long-term functional recovery for patients with severe brain injury. However, tools to reliably detect consciousness in the intensive care unit are lacking. Transcranial magnetic stimulation electroencephalography has the potential to detect consciousness in the intensive care unit, predict recovery, and prevent premature withdrawal of life-sustaining therapy.


Asunto(s)
Estado de Conciencia , Estimulación Magnética Transcraneal , Humanos , Estado de Conciencia/fisiología , Electroencefalografía , Unidades de Cuidados Intensivos , Trastornos de la Conciencia/diagnóstico , Trastornos de la Conciencia/terapia
15.
Clin Neurophysiol ; 150: 131-175, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37068329

RESUMEN

The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Enfermedades del Sistema Nervioso , Humanos , Estimulación Magnética Transcraneal/métodos , Potenciales Evocados Motores/fisiología
16.
Epilepsia ; 64(6): e118-e126, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36994648

RESUMEN

Focal epileptic seizures are characterized by abnormal neuronal discharges that can spread to other cortical areas and interfere with brain activity, thereby altering the patient's experience and behavior. The origin of these pathological neuronal discharges encompasses various mechanisms that converge toward similar clinical manifestations. Recent studies have suggested that medial temporal lobe (MTL) and neocortical (NC) seizures are often underpinned by two characteristic onset patterns, which, respectively, affect and spare synaptic transmission in cortical slices. However, these synaptic alterations and their effects have never been confirmed or studied in intact human brains. To fill this gap, we here evaluate whether responsiveness of MTL and NC are differentially affected by focal seizures, using a unique data set of cortico-cortical evoked potentials (CCEPs) collected during seizures triggered by single-pulse electrical stimulation (SPES). We find that responsiveness is abruptly reduced by the onset of MTL seizures, despite increased spontaneous activity, whereas it is preserved in the case of NC seizures. The present results provide an extreme example of dissociation between responsiveness and activity and show that brain networks are diversely affected by the onset of MTL and NC seizures, thus extending at the whole brain level the evidence of synaptic alteration found in vitro.


Asunto(s)
Epilepsias Parciales , Epilepsia del Lóbulo Temporal , Neocórtex , Humanos , Convulsiones , Potenciales Evocados/fisiología , Electroencefalografía/métodos
17.
Cereb Cortex ; 33(11): 7193-7210, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36977648

RESUMEN

Neurophysiological markers can overcome the limitations of behavioural assessments of Disorders of Consciousness (DoC). EEG alpha power emerged as a promising marker for DoC, although long-standing literature reported alpha power being sustained during anesthetic-induced unconsciousness, and reduced during dreaming and hallucinations. We hypothesized that EEG power suppression caused by severe anoxia could explain this conflict. Accordingly, we split DoC patients (n = 87) in postanoxic and non-postanoxic cohorts. Alpha power was suppressed only in severe postanoxia but failed to discriminate un/consciousness in other aetiologies. Furthermore, it did not generalize to an independent reference dataset (n = 65) of neurotypical, neurological, and anesthesia conditions. We then investigated EEG spatio-spectral gradients, reflecting anteriorization and slowing, as alternative markers. In non-postanoxic DoC, these features, combined in a bivariate model, reliably stratified patients and indexed consciousness, even in unresponsive patients identified as conscious by an independent neural marker (the Perturbational Complexity Index). Crucially, this model optimally generalized to the reference dataset. Overall, alpha power does not index consciousness; rather, its suppression entails diffuse cortical damage, in postanoxic patients. As an alternative, EEG spatio-spectral gradients, reflecting distinct pathophysiological mechanisms, jointly provide a robust, parsimonious, and generalizable marker of consciousness, whose clinical application may guide rehabilitation efforts.


Asunto(s)
Anestesia , Estado de Conciencia , Humanos , Estado de Conciencia/fisiología , Trastornos de la Conciencia , Electroencefalografía , Inconsciencia/inducido químicamente
18.
Crit Rev Oncol Hematol ; 180: 103861, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36374739

RESUMEN

Estrogen receptor (ER) signaling represents the main driver of tumor growth and survival in hormone receptor positive (HR+) breast cancer (BC). Thus, endocrine therapy (ET) alone or in combination with targeted agents constitutes the mainstay of the treatment for this BC subtype. Despite its efficacy, intrinsic or acquired resistance to ET occurs in a large proportion of cases, mainly due to aberrant activation of ER signaling (i.e. through ligand-independent ER activation, in the presence of estrogen receptor 1 (ESR1) gene aberration or ER protein phosphorylation) and/or the upregulation of escape pathways, such as the PI3K/AKT/mTOR pathway. Therefore, the development of new ER pathway targeting agents remains essential to delay and overcome ET resistance, enhance treatment efficacy and tolerability, and ultimately prolong patient survival and improve their quality of life. Several novel ER targeting agents are currently under investigation. Among these, the oral selective ER degraders (SERDs) represent the pharmacological class at the most advanced stage of development and promise to enrich the therapeutic armamentarium of HR+ BC in the next few years, as they showed promising results in several clinical trials, either as single ET agents or in combination with targeted therapies. In this manuscript, we aim to provide a comprehensive overview on the clinical development of novel ER targeting agents, reporting the most up-to-date evidence on oral SERDs and other compounds, including new selective ER modulators (SERMs), ER proteolysis targeting chimera (PROTACs), selective ER covalent antagonists (SERCAs), complete ER antagonists (CERANs), selective human ER partial agonists (ShERPAs). Furthermore, we discuss the potential implications of introducing these novel treatment strategies in the evolving and complex therapeutic scenario of HR+ BC.


Asunto(s)
Neoplasias de la Mama , Receptores de Estrógenos , Humanos , Femenino , Receptores de Estrógenos/metabolismo , Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Calidad de Vida , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Estrógenos/uso terapéutico
19.
J Neurosci Methods ; 380: 109677, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35872153

RESUMEN

Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) allows measuring non-invasively the electrical response of the human cerebral cortex to a direct perturbation. Complementing TMS-EEG with a structural neuronavigation tool (nTMS-EEG) is key for accurately selecting cortical areas, targeting them, and adjusting the stimulation parameters based on some relevant anatomical priors. This step, together with the employment of visualization tools designed to perform a quality check of TMS-evoked potentials (TEPs) in real-time during TMS-EEG data acquisition, is pivotal for maximizing the impact of the TMS pulse on the cortex and in ensuring highly reproducible measurements within sessions and across subjects. Moreover, storing stimulation parameters in the neuronavigation system can help in replicating the stimulation parameters within and across experimental sessions and sharing them across research centers. Finally, the systematic employment of neuronavigation in TMS-EEG studies is also critical to standardize measurements in clinical populations in search for reliable diagnostic and prognostic TMS-EEG-based biomarkers for neurological and psychiatric disorders.


Asunto(s)
Electroencefalografía , Neuronavegación , Corteza Cerebral/fisiología , Potenciales Evocados/fisiología , Humanos , Estimulación Magnética Transcraneal
20.
Behav Brain Sci ; 45: e54, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35319430

RESUMEN

Interpreting empirical measures of integration and differentiation as indices of cortical performance and memory consolidation during wakefulness rather than consciousness per se is inconsistent with the literature. Recent studies show that these theory-inspired measures can dissociate from such processes and reliably index the brain's capacity for experience. We consider this as a positive trend in consciousness research.


Asunto(s)
Encéfalo , Estado de Conciencia , Humanos , Vigilia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA