Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Anesthesiology ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787687

RESUMEN

BACKGROUND: Impaired glymphatic clearance of cerebral metabolic products and fluids contribute to traumatic and ischemic brain oedema and neurodegeneration in preclinical models. Glymphatic perivascular cerebrospinal fluid (CSF) flow varies between anesthetics possibly due to changes in vasomotor tone and thereby in the dynamics of the periarterial CSF-containing space. To better understand the influence of anesthetics and carbon dioxide levels on CSF dynamics, we studied the effect of periarterial size modulation on CSF distribution by changing blood carbon dioxide levels and anesthetic regimens with opposing vasomotor influences - vasoconstrictive ketamine-dexmedetomidine (K/DEX) and vasodilatory isoflurane (ISO). METHODS: End-tidal carbon dioxide (EtCO2) was modulated with either supplemental inhaled carbon dioxide to reach hypercapnia (EtCO2 80 mmHg) or hyperventilation (EtCO2 20 mmHg) in tracheostomized and anesthetized female rats. Distribution of intracisternally infused radiolabeled CSF tracer 111In-diethylamine pentaacetate was assessed for 86 minutes in 1) normoventilated (EtCO2 40 mmHg) K/DEX, 2) normoventilated ISO, 3) hypercapnic K/DEX, and 4) hyperventilated ISO groups using dynamic whole-body single-photon emission tomography. CSF volume changes were assessed with magnetic resonance imaging. RESULTS: Under normoventilation, cortical CSF tracer perfusion, perivascular space size around middle cerebral arteries (MCAs), and intracranial CSF volume were higher under K/DEX compared with ISO (cortical Cmax ratio 2.33 [95% CI 1.35 to 4.04], perivascular size ratio 2.20 [95% CI 1.09 to 4.45], and intracranial CSF volume ratio 1.90 [95% CI 1.33 to 2.71]). Under ISO, tracer was directed to systemic circulation. Under K/DEX, the intracranial tracer distribution and CSF volume were uninfluenced by hypercapnia compared with normoventilation. Intracranial CSF tracer distribution was unaffected by hyperventilation under ISO despite a 28% increase in CSF volume around MCAs. CONCLUSIONS: K/DEX and ISO overrode carbon dioxide as a regulator of CSF flow. K/DEX could be used to preserve CSF space and dynamics in hypercapnia whereas hyperventilation was insufficient to increase cerebral CSF perfusion under ISO.

2.
ACS Chem Neurosci ; 14(17): 3212-3225, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37551888

RESUMEN

Many mechanisms have been proposed to explain acute antidepressant drug-induced activation of TrkB neurotrophin receptors, but several questions remain. In a series of pharmacological experiments, we observed that TrkB activation induced by antidepressants and several other drugs correlated with sedation, and most importantly, coinciding hypothermia. Untargeted metabolomics of pharmacologically dissimilar TrkB activating treatments revealed effects on shared bioenergetic targets involved in adenosine triphosphate (ATP) breakdown and synthesis, demonstrating a common perturbation in metabolic activity. Both activation of TrkB signaling and hypothermia were recapitulated by administration of inhibitors of glucose and lipid metabolism, supporting a close relationship between metabolic inhibition and neurotrophic signaling. Drug-induced TrkB phosphorylation was independent of electroencephalography slow-wave activity and remained unaltered in knock-in mice with the brain-derived neurotrophic factor (BDNF) Val66Met allele, which have impaired activity-dependent BDNF release, alluding to an activation mechanism independent from BDNF and neuronal activity. Instead, we demonstrated that the active maintenance of body temperature prevents activation of TrkB and other targets associated with antidepressants, including p70S6 kinase downstream of the mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3ß (GSK3ß). Increased TrkB, GSK3ß, and p70S6K phosphorylation was also observed during recovery sleep following sleep deprivation, when a physiological temperature drop is known to occur. Our results suggest that the changes in bioenergetics and thermoregulation are causally connected to TrkB activation and may act as physiological regulators of signaling processes involved in neuronal plasticity.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Hipotermia , Animales , Ratones , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Mamíferos/metabolismo , Receptor trkB/metabolismo , Transducción de Señal
3.
J Control Release ; 355: 135-148, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36731802

RESUMEN

Nanoparticles are ultrafine particulate matter having considerable potential for treatment of central nervous system (CNS) disorders. Despite their tiny size, the blood-brain barrier (BBB) restricts their access to the CNS. Their direct cerebrospinal fluid (CSF) administration bypasses the BBB endothelium, but still fails to give adequate brain uptake. We present a novel approach for efficient CNS delivery of 111In-radiolabelled gold nanoparticles (AuNPs; 10-15 nm) via intra-cisterna magna administration, with tracking by SPECT imaging. To accelerate CSF brain influx, we administered AuNPs intracisternally in conjunction with systemic hypertonic saline, which dramatically increased the parenchymal AuNP uptake, especially in deep brain regions. AuNPs entered the CNS along periarterial spaces as visualized by MRI of gadolinium-labelled AuNPs and were cleared from brain within 24 h and excreted through the kidneys. Thus, the glymphatic-assisted perivascular network augment by systemic hypertonic saline is a pathway for highly efficient brain-wide distribution of small AuNPs.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/metabolismo , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Transporte Biológico
4.
J Cereb Blood Flow Metab ; 43(7): 1153-1165, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36809165

RESUMEN

The glymphatic system is a brain-wide waste drainage system that promotes cerebrospinal fluid circulation through the brain to remove waste metabolites. Currently, the most common methods for assessing glymphatic function are ex vivo fluorescence microscopy of brain slices, macroscopic cortical imaging, and MRI. While all these methods have been crucial for expanding our understanding of the glymphatic system, new techniques are required to overcome their specific drawbacks. Here, we evaluate SPECT/CT imaging as a tool to assess glymphatic function in different anesthesia-induced brain states using two radiolabeled tracers, [111In]-DTPA and [99mTc]-NanoScan. Using SPECT, we confirmed the existence of brain state-dependent differences in glymphatic flow and we show brain state-dependent differences of CSF flow kinetics and CSF egress to the lymph nodes. We compare SPECT and MRI for imaging glymphatic flow and find that the two imaging modalities show the same overall pattern of CSF flow, but that SPECT was specific across a greater range of tracer concentrations than MRI. Overall, we find that SPECT imaging is a promising tool for imaging the glymphatic system, and that qualities such as high sensitivity and the variety of available tracers make SPECT imaging a good alternative for glymphatic research.


Asunto(s)
Sistema Glinfático , Ratas , Animales , Encéfalo/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único
5.
iScience ; 25(10): 105250, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36274948

RESUMEN

Intrathecal administration enables central nervous system delivery of drugs that do not bypass the blood-brain barrier. Systemic administration of hypertonic saline (HTS) enhances delivery of intrathecal therapeutics into the neuropil, but its effect on solute clearance from the brain remains unknown. Here, we developed a dynamic in vivo single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging platform to study the effects of HTS on whole-body distribution of the radiolabeled tracer 99mTc-diethylenetriaminepentaacetic acid (DTPA) administered through intracisternal, intrastriatal, or intravenous route in anesthetized rats. Co-administration of systemic HTS increased intracranial exposure to intracisternal 99mTc-DTPA by ∼80% during imaging. In contrast, HTS had minimal effects on brain clearance of intrastriatal 99mTc-DTPA. In sum, SPECT/CT imaging presents a valuable approach to study glymphatic drug delivery. Using this methodology, we show that systemic HTS increases intracranial availability of cerebrospinal fluid-administered tracer, but has marginal effects on brain clearance, thus substantiating a simple, yet effective strategy for enhancing intrathecal drug delivery to the brain.

6.
J Control Release ; 344: 214-224, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35301056

RESUMEN

The blood-brain barrier significantly limits effective drug delivery to central nervous system (CNS) targets. The recently characterized glymphatic system offers a perivascular highway for intrathecally (i.t.) administered drugs to reach deep brain structures. Although periarterial cerebrospinal fluid (CSF) influx and concomitant brain drug delivery can be enhanced by pharmacological or hyperosmotic interventions, their effects on drug delivery to the spinal cord, an important target for many drugs, have not been addressed. Hence, we studied in rats whether enhancement of periarterial flow by systemic hypertonic solution might be utilized to enhance spinal delivery and efficacy of i.t. morphine. We also studied whether the hyperosmolar intervention affects brain or cerebrospinal fluid drug concentrations after systemic administration. Periarterial CSF influx was enhanced by intraperitoneal injection of hypertonic saline (HTS, 5.8%, 20 ml/kg, 40 mOsm/kg). The antinociceptive effects of morphine were characterized, using tail flick, hot plate and paw pressure tests. Drug concentrations in serum, tissue and microdialysis samples were determined by liquid chromatography-tandem mass spectrometry. Compared with isotonic solution, HTS increased concentrations of spinal i.t. administered morphine by 240% at the administration level (T13-L1) at 60 min and increased the antinociceptive effect of morphine in tail flick, hot plate, and paw pressure tests. HTS also independently increased hot plate and paw pressure latencies but had no effect in the tail flick test. HTS transiently increased the penetration of intravenous morphine into the lateral ventricle, but not into the hippocampus. In conclusion, acute systemic hyperosmolality is a promising intervention for enhanced spinal delivery of i.t. administered morphine. The relevance of this intervention should be expanded to other i.t. drugs and brought to clinical trials.


Asunto(s)
Morfina , Médula Espinal , Animales , Inyecciones Espinales , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley
7.
Neurosci Lett ; 764: 136200, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34464676

RESUMEN

BACKGROUND: The precise mechanism governing the antidepressant effects of tianeptine is unknown. Modulation of brain glutamatergic neurotransmission has been however implicated, suggesting potential shared features with rapid-acting antidepressants targeting N-methyl-D-aspartate receptors (NMDAR). Our recent studies suggest that a single subanesthetic dose of NMDAR antagonists ketamine or nitrous oxide (N2O) gradually evoke 1-4 Hz electrophysiological activity (delta-rhythm) of cerebral cortex that is accompanied by molecular signaling associated with synaptic plasticity (e.g. activation of tropomyosin receptor kinase B (TrkB) and inhibition of glycogen synthase kinase 3ß (GSK3ß)). METHODS: We have here investigated the time-dependent effects of tianeptine (30 mg/kg, i.p.) on electrocorticogram, focusing on potential biphasic regulation of the delta-rhythm. Selected molecular markers associated with ketamine's antidepressant effects were analyzed in the medial prefrontal cortex after the treatment using quantitative polymerase chain reaction and western blotting. RESULTS: An acute tianeptine treatment induced changes of electrocorticogram typical for active wakefulness that lasted for 2-2.5 h, which was followed by high amplitude delta-activity rebound. The levels of Arc and Homer1a, but not c-Fos, BdnfIV and Zif268, were increased by tianeptine. Phosphorylation of mitogen-activated protein kinase (MAPK), TrkB and GSK3ß remained unaltered at 2-hours and at 3-hours post-treatment. Notably, tianeptine also increased the level of mRNA of several dual specificity phosphatases (Duspss) - negative regulators of MAPK. CONCLUSION: Tianeptine produces acute changes of electrocorticogram resembling rapid-acting antidepressants ketamine and N2O. Concomitant regulation of Dusps may hamper the effects of tianeptine on MAPK pathway and influence the magnitude of homeostatic emergence of delta-activity and TrkB-GSK3ß signaling.


Asunto(s)
Antidepresivos Tricíclicos/farmacología , Ritmo Delta/efectos de los fármacos , Fosfatasas de Especificidad Dual/metabolismo , Corteza Prefrontal/efectos de los fármacos , Tiazepinas/farmacología , Animales , Electrocorticografía , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Modelos Animales , Fosforilación/efectos de los fármacos , Corteza Prefrontal/metabolismo , Receptor trkB/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Transl Psychiatry ; 10(1): 357, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087695

RESUMEN

The neural circuits regulating motivation and movement include midbrain dopaminergic neurons and associated inhibitory GABAergic and excitatory glutamatergic neurons in the anterior brainstem. Differentiation of specific subtypes of GABAergic and glutamatergic neurons in the mouse embryonic brainstem is controlled by a transcription factor Tal1. This study characterizes the behavioral and neurochemical changes caused by the absence of Tal1 function. The Tal1cko mutant mice are hyperactive, impulsive, hypersensitive to reward, have learning deficits and a habituation defect in a novel environment. Only minor changes in their dopaminergic system were detected. Amphetamine induced striatal dopamine release and amphetamine induced place preference were normal in Tal1cko mice. Increased dopamine signaling failed to stimulate the locomotor activity of the Tal1cko mice, but instead alleviated their hyperactivity. Altogether, the Tal1cko mice recapitulate many features of the attention and hyperactivity disorders, suggesting a role for Tal1 regulated developmental pathways and neural structures in the control of motivation and movement.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Tronco Encefálico/citología , Neuronas Dopaminérgicas , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Anfetamina/farmacología , Animales , Trastorno por Déficit de Atención con Hiperactividad/genética , Mesencéfalo , Ratones
9.
PLoS One ; 15(6): e0235046, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32579566

RESUMEN

Post-ictal emergence of slow wave EEG (electroencephalogram) activity and burst-suppression has been associated with the therapeutic effects of the electroconvulsive therapy (ECT), indicating that mere "cerebral silence" may elicit antidepressant actions. Indeed, brief exposures to burst-suppressing anesthesia has been reported to elicit antidepressant effects in a subset of patients, and produce behavioral and molecular alterations, such as increased expression of brain-derived neurotrophic factor (BDNF), connected with antidepressant responses in rodents. Here, we have further tested the cerebral silence hypothesis by determining whether repeated exposures to isoflurane anesthesia reduce depressive-like symptoms or influence BDNF expression in male Wistar outbred rats (Crl:WI(Han)) subjected to chronic mild stress (CMS), a model which is responsive to repeated electroconvulsive shocks (ECS, a model of ECT). Stress-susceptible, stress-resilient, and unstressed rats were exposed to 5 doses of isoflurane over a 15-day time period, with administrations occurring every third day. Isoflurane dosing is known to reliably produce rapid EEG burst-suppression (4% induction, 2% maintenance; 15 min). Antidepressant and anxiolytic effects of isoflurane were assessed after the first, third, and fifth drug exposure by measuring sucrose consumption, as well as performance on the open field and the elevated plus maze tasks. Tissue samples from the medial prefrontal cortex and hippocampus were collected, and levels of BDNF (brain-derived neurotrophic factor) protein were assessed. We find that isoflurane anesthesia had no impact on the behavior of stress-resilient or anhedonic rats in selected tests; findings which were consistent-perhaps inherently related-with unchanged levels of BDNF.


Asunto(s)
Antidepresivos/farmacología , Trastorno Depresivo/prevención & control , Isoflurano/farmacología , Estrés Psicológico/prevención & control , Anestésicos por Inhalación , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Trastorno Depresivo/etiología , Trastorno Depresivo/fisiopatología , Modelos Animales de Enfermedad , Terapia Electroconvulsiva/métodos , Electroencefalografía , Electrochoque/efectos adversos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Humanos , Isoflurano/administración & dosificación , Masculino , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Ratas Wistar , Estrés Psicológico/etiología , Estrés Psicológico/fisiopatología
10.
Neuropharmacology ; 157: 107684, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31251996

RESUMEN

Subanesthetic rather than anesthetic doses are thought to bring the rapid antidepressant effects of the NMDAR (N-methyl-d-aspartate receptor) antagonist ketamine. Among molecular mechanisms, activation of BDNF receptor TrkB along with the inhibition of GSK3ß (glycogen synthase kinase 3ß) are considered as critical molecular level determinants for ketamine's antidepressant effects. Hydroxynorketamines (2R,6R)-HNK and (2S,6S)-HNK), non-anesthetic metabolites of ketamine, have been proposed to govern the therapeutic effects of ketamine through a mechanism not involving NMDARs. However, we have shown that nitrous oxide, another NMDAR blocking anesthetic and a putative rapid-acting antidepressant, evokes TrkB-GSK3ß signaling alterations during rebound slow EEG (electroencephalogram) oscillations. We investigated here the acute effects of ketamine, 6,6-d2-ketamine (a ketamine analogue resistant to metabolism) and cis-HNK that contains (2R,6R) and (2S,6S) enantiomers in 1:1 ratio, on TrkB-GSK3ß signaling and concomitant electroencephalographic (EEG) alterations in the adult mouse cortex. Ketamine dose-dependently increased slow oscillations and phosphorylations of TrkBY816 and GSK3ßS9 in crude brain homogenates (i.e. sedative/anesthetic doses (>50 mg/kg, i.p.) produced more prominent effects than a subanesthetic dose (10 mg/kg, i.p.)). Similar, albeit less obvious, effects were seen in crude synaptosomes. A sedative dose of 6,6-d2-ketamine (100 mg/kg, i.p.) recapitulated the effects of ketamine on TrkB and GSK3ß phosphorylation while cis-HNK at a dose of 20 mg/kg produced negligible acute effects on TrkB-GSK3ß signaling or slow oscillations. These findings suggest that the acute effects of ketamine on TrkB-GSK3ß signaling are by no means restricted to subanesthetic (i.e. antidepressant) doses and that cis-HNK is not responsible for these effects.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipnóticos y Sedantes/farmacología , Ketamina/análogos & derivados , Ketamina/farmacología , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Encéfalo/metabolismo , Ondas Encefálicas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Electroencefalografía , Masculino , Ratones , Fosforilación/efectos de los fármacos , Transducción de Señal , Sinaptosomas/metabolismo
11.
Mol Neurobiol ; 56(6): 4163-4174, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30288695

RESUMEN

Rapid antidepressant effects of ketamine become most evident when its psychotomimetic effects subside, but the neurobiological basis of this "lag" remains unclear. Laughing gas (N2O), another NMDA-R (N-methyl-D-aspartate receptor) blocker, has been reported to bring antidepressant effects rapidly upon drug discontinuation. We took advantage of the exceptional pharmacokinetic properties of N2O to investigate EEG (electroencephalogram) alterations and molecular determinants of antidepressant actions during and immediately after NMDA-R blockade. Effects of the drugs on brain activity were investigated in C57BL/6 mice using quantitative EEG recordings. Western blot and qPCR were used for molecular analyses. Learned helplessness (LH) was used to assess antidepressant-like behavior. Immediate-early genes (e.g., bdnf) and phosphorylation of mitogen-activated protein kinase-markers of neuronal excitability-were upregulated during N2O exposure. Notably, phosphorylation of BDNF receptor TrkB and GSK3ß (glycogen synthase kinase 3ß) became regulated only gradually upon N2O discontinuation, during a brain state dominated by slow EEG activity. Subanesthetic ketamine and flurothyl-induced convulsions (reminiscent of electroconvulsive therapy) also evoked slow oscillations when their acute pharmacological effects subsided. The correlation between ongoing slow EEG oscillations and TrkB-GSK3ß signaling was further strengthened utilizing medetomidine, a hypnotic-sedative agent that facilitates slow oscillations directly through the activation of α2-adrenergic autoreceptors. Medetomidine did not, however, facilitate markers of neuronal excitability or produce antidepressant-like behavioral changes in LH. Our results support a hypothesis that transient cortical excitability and the subsequent regulation of TrkB and GSK3ß signaling during homeostatic emergence of slow oscillations are critical components for rapid antidepressant responses.


Asunto(s)
Antidepresivos/farmacología , Corteza Cerebral/metabolismo , Electroencefalografía , Neuronas/metabolismo , Receptor trkB/metabolismo , Transducción de Señal , Anestésicos/farmacología , Animales , Biomarcadores/metabolismo , Corteza Cerebral/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Flurotilo/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Homeostasis/efectos de los fármacos , Ketamina/farmacología , Medetomidina/farmacología , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Óxido Nitroso/farmacología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
12.
PLoS One ; 12(4): e0175258, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28380075

RESUMEN

Brain development is a complex process regulated by genetic programs and activity-dependent neuronal connectivity. Anesthetics profoundly alter neuronal excitability, and anesthesia during early brain development has been consistently associated with neuroapoptosis, altered synaptogenesis, and persistent behavioral abnormalities in experimental animals. However, the depth, and even more the duration and developmental time point(s) of exposure to anesthesia determine the neuropathological and long-term behavioral consequences of anesthetics. Here, we have investigated adulthood phenotypic changes induced by repeated but brief (30 min) isoflurane anesthesia delivered during two distinct developmental periods in male mice. A set of animals were subjected to anesthesia treatments at postnatal days 7, 8 and 9 (P7-9) when the animals are susceptible to anesthesia-induced neuroapoptosis and reduced synaptogenesis. To control the potential influence of (handling) stress, a separate group of animals underwent repeated maternal separations of similar durations. Another set of animals were exposed to the same treatments at postnatal days 15, 16 and 17 (P15-17), a developmental time period when anesthetics have been shown to increase synaptogenesis. Starting from postnatal week 9 the mouse phenotype was evaluated using a battery of behavioral tests that assess general locomotor activity (home cage activity, open field), learning and memory (water maze) and depression- (saccharin preference, forced swim test), anxiety- (light-dark box, stress-induced hyperthermia) and schizophrenia- (nesting, prepulse inhibition) related endophenotypes. Apart from mild impairment in spatial navigation memory, exposure to anesthesia treatments during P7-9 did not bring obvious behavioral alterations in adult animals. Importantly, maternal separation during the same developmental period produced a very similar phenotype during the water maze. Mice exposed to anesthesia during P15-17 showed mild hyperactivity and risk-taking behavior in adulthood, but were otherwise normal. We conclude that significantly longer administration periods are needed in order for early-life repeated exposures to anesthetics to produce behavioral alterations in adult mice.


Asunto(s)
Anestésicos por Inhalación/efectos adversos , Conducta Animal/efectos de los fármacos , Isoflurano/efectos adversos , Anestésicos por Inhalación/farmacología , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Isoflurano/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Actividad Motora/efectos de los fármacos , Navegación Espacial/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA