Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Adv Sci (Weinh) ; 11(23): e2307963, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602451

RESUMEN

In recent decades, the role of tumor biomechanics on cancer cell behavior at the primary site has been increasingly appreciated. However, the effect of primary tumor biomechanics on the latter stages of the metastatic cascade, such as metastatic seeding of secondary sites and outgrowth remains underappreciated. This work sought to address this in the context of triple negative breast cancer (TNBC), a cancer type known to aggressively disseminate at all stages of disease progression. Using mechanically tuneable model systems, mimicking the range of stiffness's typically found within breast tumors, it is found that, contrary to expectations, cancer cells exposed to softer microenvironments are more able to colonize secondary tissues. It is shown that heightened cell survival is driven by enhanced metabolism of fatty acids within TNBC cells exposed to softer microenvironments. It is demonstrated that uncoupling cellular mechanosensing through integrin ß1 blocking antibody effectively causes stiff primed TNBC cells to behave like their soft counterparts, both in vitro and in vivo. This work is the first to show that softer tumor microenvironments may be contributing to changes in disease outcome by imprinting on TNBC cells a greater metabolic flexibility and conferring discrete cell survival advantages.


Asunto(s)
Ácidos Grasos , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Humanos , Femenino , Ácidos Grasos/metabolismo , Ratones , Línea Celular Tumoral , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Metástasis de la Neoplasia
2.
STAR Protoc ; 4(4): 102729, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37995194

RESUMEN

Intercalated motifs or i-Motifs (iMs) are nucleic acid structures formed by cytosine-rich sequences, which may regulate cellular processes and have broad applications in nanotechnology due to their pH-dependent nature. We have developed an iM-specific nanobody (iMbody) that can recognize iM DNA structures regardless of their sequences, making it a versatile research tool for studying iMs in various contexts. Here, we provide a protocol for the bacterial expression and His-tag purification of iMbody. We then describe procedures for performing ELISA and immunostaining using iMbody.


Asunto(s)
ADN , Nanotecnología , Motivos de Nucleótidos , Nanotecnología/métodos , ADN/metabolismo
3.
Nucleic Acids Res ; 51(18): 9658-9671, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37615576

RESUMEN

Methylation of cytosines in the CG context (mCG) is the most abundant DNA modification in vertebrates that plays crucial roles in cellular differentiation and identity. After fertilization, DNA methylation patterns inherited from parental gametes are remodelled into a state compatible with embryogenesis. In mammals, this is achieved through the global erasure and re-establishment of DNA methylation patterns. However, in non-mammalian vertebrates like zebrafish, no global erasure has been observed. To investigate the evolutionary conservation and divergence of DNA methylation remodelling in teleosts, we generated base resolution DNA methylome datasets of developing medaka and medaka-zebrafish hybrid embryos. In contrast to previous reports, we show that medaka display comparable DNA methylome dynamics to zebrafish with high gametic mCG levels (sperm: ∼90%; egg: ∼75%), and adoption of a paternal-like methylome during early embryogenesis, with no signs of prior DNA methylation erasure. We also demonstrate that non-canonical DNA methylation (mCH) reprogramming at TGCT tandem repeats is a conserved feature of teleost embryogenesis. Lastly, we find remarkable evolutionary conservation of DNA methylation remodelling patterns in medaka-zebrafish hybrids, indicative of compatible DNA methylation maintenance machinery in far-related teleost species. Overall, these results suggest strong evolutionary conservation of DNA methylation remodelling pathways in teleosts, which is distinct from the global DNA methylome erasure and reestablishment observed in mammals.

4.
Sci Adv ; 8(48): eabn2258, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459547

RESUMEN

DNA methylation [5-methylcytosine (5mC)] is a repressive gene-regulatory mark required for vertebrate embryogenesis. Genomic 5mC is tightly regulated through the action of DNA methyltransferases, which deposit 5mC, and ten-eleven translocation (TET) enzymes, which participate in its active removal through the formation of 5-hydroxymethylcytosine (5hmC). TET enzymes are essential for mammalian gastrulation and activation of vertebrate developmental enhancers; however, to date, a clear picture of 5hmC function, abundance, and genomic distribution in nonvertebrate lineages is lacking. By using base-resolution 5mC and 5hmC quantification during sea urchin and lancelet embryogenesis, we shed light on the roles of nonvertebrate 5hmC and TET enzymes. We find that these invertebrate deuterostomes use TET enzymes for targeted demethylation of regulatory regions associated with developmental genes and show that the complement of identified 5hmC-regulated genes is conserved to vertebrates. This work demonstrates that active 5mC removal from regulatory regions is a common feature of deuterostome embryogenesis suggestive of an unexpected deep conservation of a major gene-regulatory module.


Asunto(s)
Desmetilación del ADN , Vertebrados , Animales , Vertebrados/genética , Redes Reguladoras de Genes , Desarrollo Embrionario/genética , Metilación de ADN , Mamíferos
5.
Nat Genet ; 54(7): 1037-1050, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35789323

RESUMEN

Zebrafish, a popular organism for studying embryonic development and for modeling human diseases, has so far lacked a systematic functional annotation program akin to those in other animal models. To address this, we formed the international DANIO-CODE consortium and created a central repository to store and process zebrafish developmental functional genomic data. Our data coordination center ( https://danio-code.zfin.org ) combines a total of 1,802 sets of unpublished and re-analyzed published genomic data, which we used to improve existing annotations and show its utility in experimental design. We identified over 140,000 cis-regulatory elements throughout development, including classes with distinct features dependent on their activity in time and space. We delineated the distinct distance topology and chromatin features between regulatory elements active during zygotic genome activation and those active during organogenesis. Finally, we matched regulatory elements and epigenomic landscapes between zebrafish and mouse and predicted functional relationships between them beyond sequence similarity, thus extending the utility of zebrafish developmental genomics to mammals.


Asunto(s)
Bases de Datos Genéticas , Regulación del Desarrollo de la Expresión Génica , Genoma , Genómica , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas de Pez Cebra , Pez Cebra , Animales , Cromatina/genética , Genoma/genética , Humanos , Ratones , Anotación de Secuencia Molecular , Organogénesis/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
6.
Methods Mol Biol ; 2272: 281-318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34009621

RESUMEN

5-methylcytosine (5mC) is a gene-regulatory mark associated with transcriptional repression. 5mC can be erased through the catalytic action of Ten-eleven translocation (TET) methylcytosine dioxygenases (TET1, TET2, TET3), which oxidize 5mC resulting in its removal from the genome. In vertebrates, TET enzymes facilitate DNA demethylation of regulatory regions linked to genes involved in developmental processes. Consequently, TET ablation leads to severe morphological defects and developmental arrest. Here we describe a system that can facilitate the study of relationships between TET enzymes, 5mC, and embryo development. We provide detailed descriptions for the generation of F0 zebrafish tet1/2/3 knockouts using CRISPR/Cas9 technology and elaborate on the strategies to assess the impact of TET loss by reduced representation bisulfite sequencing (RRBS).


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Metilación de ADN , Dioxigenasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Dioxigenasas/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética
7.
Front Cell Dev Biol ; 9: 643603, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748137

RESUMEN

DNA methylation predominantly occurs at CG dinucleotides in vertebrate genomes; however, non-CG methylation (mCH) is also detectable in vertebrate tissues, most notably in the nervous system. In mammals it is well established that mCH is targeted to CAC trinucleotides by DNMT3A during nervous system development where it is enriched in gene bodies and associated with transcriptional repression. Nevertheless, the conservation of developmental mCH accumulation and its deposition by DNMT3A is largely unexplored and has yet to be functionally demonstrated in other vertebrates. In this study, by analyzing DNA methylomes and transcriptomes of zebrafish brains, we identified enrichment of mCH at CAC trinucleotides (mCAC) at defined transposon motifs as well as in developmentally downregulated genes associated with developmental and neural functions. We further generated and analyzed DNA methylomes and transcriptomes of developing zebrafish larvae and demonstrated that, like in mammals, mCH accumulates during post-embryonic brain development. Finally, by employing CRISPR/Cas9 technology, we unraveled a conserved role for Dnmt3a enzymes in developmental mCAC deposition. Overall, this work demonstrates the evolutionary conservation of developmental mCH dynamics and highlights the potential of zebrafish as a model to study mCH regulation and function during normal and perturbed development.

8.
Nucleic Acids Res ; 48(22): 12675-12688, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33271598

RESUMEN

In vertebrates, DNA methylation predominantly occurs at CG dinucleotides however, widespread non-CG methylation (mCH) has been reported in mammalian embryonic stem cells and in the brain. In mammals, mCH is found at CAC trinucleotides in the nervous system, where it is associated with transcriptional repression, and at CAG trinucleotides in embryonic stem cells, where it positively correlates with transcription. Moreover, CAC methylation appears to be a conserved feature of adult vertebrate brains. Unlike any of those methylation signatures, here we describe a novel form of mCH that occurs in the TGCT context within zebrafish mosaic satellite repeats. TGCT methylation is inherited from both male and female gametes, remodelled during mid-blastula transition, and re-established during gastrulation in all embryonic layers. Moreover, we identify DNA methyltransferase 3ba (Dnmt3ba) as the primary enzyme responsible for the deposition of this mCH mark. Finally, we observe that TGCT-methylated repeats are specifically associated with H3K9me3-marked heterochromatin suggestive of a functional interplay between these two gene-regulatory marks. Altogether, this work provides insight into a novel form of vertebrate mCH and highlights the substrate diversity of vertebrate DNA methyltransferases.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , ADN Satélite/genética , Procesamiento Proteico-Postraduccional/genética , Proteínas de Pez Cebra/genética , Animales , Blastocisto/metabolismo , Células Madre Embrionarias/metabolismo , Heterocromatina , Histonas/genética , Mosaicismo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
9.
Am J Physiol Cell Physiol ; 318(6): C1226-C1237, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32348180

RESUMEN

The ubiquitous calpains, calpain-1 and -2, play important roles in Ca2+-dependent membrane repair. Mechanically active tissues like skeletal muscle are particularly reliant on mechanisms to repair and remodel membrane injury, such as those caused by eccentric damage. We demonstrate that calpain-1 and -2 are master effectors of Ca2+-dependent repair of mechanical plasma membrane scrape injuries, although they are dispensable for repair/removal of small wounds caused by pore-forming agents. Using CRISPR gene-edited human embryonic kidney 293 (HEK293) cell lines, we established that loss of both calpains-1 and -2 (CAPNS1-/-) virtually ablates Ca2+-dependent repair of mechanical scrape injuries but does not affect injury or recovery from perforation by streptolysin-O or saponin. In contrast, cells with targeted knockout of either calpain-1 (CAPN1-/-) or -2 (CAPN2-/-) show near-normal repair of mechanical injuries, inferring that both calpain-1 and calpain-2 are equally capable of conducting the cascade of proteolytic cleavage events to reseal a membrane injury, including that of the known membrane repair agent dysferlin. A severe muscular dystrophy in a murine model with skeletal muscle knockout of Capns1 highlights vital roles for calpain-1 and/or -2 for health and viability of skeletal muscles not compensated for by calpain-3 (CAPN3). We propose that the dystrophic phenotype relates to loss of maintenance of plasma membrane/cytoskeletal networks by calpains-1 and -2 in response to directed and dysfunctional Ca2+-signaling, pathways hyperstimulated in the context of membrane injury. With CAPN1 variants associated with spastic paraplegia, a severe dystrophy observed with muscle-specific loss of calpain-1 and -2 activity identifies CAPN2 and CAPNS1 as plausible candidate neuromuscular disease genes.


Asunto(s)
Calpaína/deficiencia , Membrana Celular/enzimología , Músculo Esquelético/enzimología , Distrofia Muscular de Cinturas/enzimología , Distrofia Muscular Animal/enzimología , Animales , Proteínas Bacterianas/farmacología , Señalización del Calcio , Calpaína/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/patología , Modelos Animales de Enfermedad , Disferlina/deficiencia , Disferlina/genética , Femenino , Células HEK293 , Humanos , Masculino , Ratones Noqueados , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Saponinas/farmacología , Índice de Severidad de la Enfermedad , Estreptolisinas/farmacología
10.
Biochem Soc Trans ; 47(3): 875-885, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31209155

RESUMEN

Ten-eleven translocation (TET) methylcytosine dioxygenases (TET1, TET2, TET3) actively cause demethylation of 5-methylcytosine (5mC) and produce and safeguard hypomethylation at key regulatory regions across the genome. This 5mC erasure is particularly important in pluripotent embryonic stem cells (ESCs) as they need to maintain self-renewal capabilities while retaining the potential to generate different cell types with diverse 5mC patterns. In this review, we discuss the multiple roles of TET proteins in mouse ESCs, and other vertebrate model systems, with a particular focus on TET functions in pluripotency, differentiation, and developmental DNA methylome reprogramming. Furthermore, we elaborate on the recently described non-catalytic roles of TET proteins in diverse biological contexts. Overall, TET proteins are multifunctional regulators that through both their catalytic and non-catalytic roles carry out myriad functions linked to early developmental processes.


Asunto(s)
Desmetilación del ADN , Dioxigenasas/metabolismo , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular , Humanos , Células Madre Pluripotentes/enzimología , Unión Proteica
11.
Cell Signal ; 33: 30-40, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28192161

RESUMEN

Myoferlin and dysferlin are closely related members of the ferlin family of Ca2+-regulated vesicle fusion proteins. Dysferlin is proposed to play a role in Ca2+-triggered vesicle fusion during membrane repair. Myoferlin regulates endocytosis, recycling of growth factor receptors and adhesion proteins, and is linked to the metastatic potential of cancer cells. Our previous studies establish that dysferlin is cleaved by calpains during membrane injury, with the cleavage motif encoded by alternately-spliced exon 40a. Herein we describe the cleavage of myoferlin, yielding a membrane-associated dual C2 domain 'mini-myoferlin'. Myoferlin bears two enzymatic cleavage sites: a canonical cleavage site encoded by exon 38 within the C2DE domain; and a second cleavage site in the linker adjacent to C2DE, encoded by alternately-spliced exon 38a, homologous to dysferlin exon 40a. Both myoferlin cleavage sites, when introduced into dysferlin, can functionally substitute for exon 40a to confer Ca2+-triggered calpain cleavage in response to membrane injury. However, enzymatic cleavage of myoferlin is complex, showing both constitutive or Ca2+-enhanced cleavage in different cell lines, that is not solely dependent on calpains-1 or -2. The functional impact of myoferlin cleavage was explored through signalling protein phospho-protein arrays revealing specific activation of ERK1/2 by ectopic expression of cleavable myoferlin, but not an uncleavable isoform. In summary, we molecularly define two enzymatic cleavage sites within myoferlin and demonstrate 'mini-myoferlin' can be detected in human breast cancer tumour samples and cell lines. These data further illustrate that enzymatic cleavage of ferlins is an evolutionarily preserved mechanism to release functionally specialized mini-modules.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Calpaína/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Disferlina/química , Disferlina/metabolismo , Células HEK293 , Humanos , Ratones , Modelos Moleculares , Fosforilación , Dominios Proteicos , Proteolisis , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA