RESUMEN
Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 1018, 4 × 1019, and 2 × 1020 n/cm2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasing neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 1019 n/cm2, with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 1020 n/cm2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. The cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.