Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Biosci Rep ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105472

RESUMEN

Motility by means of flagella plays an important role in the persistent colonization of Helicobacter pylori in the human stomach. The H. pylori flagellar motor has a complex structure that includes a periplasmic scaffold, the components of which are still being identified. Here, we report the isolation and characterization of the soluble forms of two putative essential H. pylori motor scaffold components, proteins PflA and PflB. We developed an on-column refolding procedure, overcoming the challenge of inclusion body formation in E. coli. We employed mild detergent sarkosyl to enhance protein recovery and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO)-containing buffers to achieve optimal solubility and monodispersity. In addition, we showed that PflA lacking the ß-rich N-terminal domain is expressed in a soluble form, and behaves as a monodisperse monomer in solution. The methods for producing the soluble, folded forms of H. pylori PflA and PflB established in this work will facilitate future biophysical and structural studies aimed at deciphering their location and their function within the flagellar motor.

2.
J Biomed Sci ; 31(1): 45, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693534

RESUMEN

Campylobacter jejuni is a very common cause of gastroenteritis, and is frequently transmitted to humans through contaminated food products or water. Importantly, C. jejuni infections have a range of short- and long-term sequelae such as irritable bowel syndrome and Guillain Barre syndrome. C. jejuni triggers disease by employing a range of molecular strategies which enable it to colonise the gut, invade the epithelium, persist intracellularly and avoid detection by the host immune response. The objective of this review is to explore and summarise recent advances in the understanding of the C. jejuni molecular factors involved in colonisation, invasion of cells, collective quorum sensing-mediated behaviours and persistence. Understanding the mechanisms that underpin the pathogenicity of C. jejuni will enable future development of effective preventative approaches and vaccines against this pathogen.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Factores de Virulencia , Campylobacter jejuni/patogenicidad , Campylobacter jejuni/fisiología , Humanos , Infecciones por Campylobacter/microbiología , Percepción de Quorum
3.
IUBMB Life ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748402

RESUMEN

Helicobacter pylori encodes homologues of PilM, PilN and PilO from bacteria with Type IV pili, where these proteins form a pilus alignment complex. Inactivation of pilO changes H. pylori motility in semi-solid media, suggesting a link to the chemosensory pathways or flagellar motor. Here, we showed that mutation of the pilO or pilN gene in H. pylori strain SS1 reduced the mean linear swimming speed in liquid media, implicating PilO and PilN in the function, or regulation of, the flagellar motor. We also demonstrated that the soluble variants of H. pylori PilN and PilO share common biochemical properties with their Type IV pili counterparts which suggests their adapted function in the bacterial flagellar motor may be similar to that in the Type IV pili.

4.
Proc Natl Acad Sci U S A ; 121(4): e2317452121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38236729

RESUMEN

Bacterial flagella and type IV pili (TFP) are surface appendages that enable motility and mechanosensing through distinct mechanisms. These structures were previously thought to have no components in common. Here, we report that TFP and some flagella share proteins PilO, PilN, and PilM, which we identified as part of the Helicobacter pylori flagellar motor. H. pylori mutants lacking PilO or PilN migrated better than wild type in semisolid agar because they continued swimming rather than aggregated into microcolonies, mimicking the TFP-regulated surface response. Like their TFP homologs, flagellar PilO/PilN heterodimers formed a peripheral cage that encircled the flagellar motor. These results indicate that PilO and PilN act similarly in flagella and TFP by differentially regulating motility and microcolony formation when bacteria encounter surfaces.


Asunto(s)
Proteínas Bacterianas , Fimbrias Bacterianas , Proteínas Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Bacterias , Flagelos/fisiología
5.
Trends Microbiol ; 32(1): 93-104, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37479622

RESUMEN

Reactive oxygen species (ROS), including the superoxide radical anion (O2•-), hydrogen peroxide (H2O2), and the hydroxyl radical (•HO), are inherent components of bacterial metabolism in an aerobic environment. Bacteria also encounter exogenous ROS, such as those produced by the host cells during the respiratory burst. As ROS have the capacity to damage bacterial DNA, proteins, and lipids, detoxification of ROS is critical for bacterial survival. It has been recently recognised that low-molecular-weight (LMW) thiols play a central role in this process. Here, we review the emerging role of cysteine in bacterial resistance to ROS with a link to broader elements of bacterial lifestyle closely associated with cysteine-mediated oxidative stress response, including virulence and antibiotic resistance.


Asunto(s)
Cisteína , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno/metabolismo , Cisteína/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Virulencia , Estrés Oxidativo , Superóxidos/metabolismo , Bacterias/metabolismo , Farmacorresistencia Microbiana
6.
Biosci Trends ; 17(6): 491-498, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38072447

RESUMEN

The bacterial flagellar motor is a molecular nanomachine, the assembly and regulation of which requires many accessory proteins. Their identity, structure and function are often discovered through characterisation of mutants with impaired motility. Here, we demonstrate the functional association of the Helicobacter pylori peptidoglycan-associated lipoprotein (HpPal) with the flagellar motor by analysing the motility phenotype of the ∆pal mutant, and present the results of the preliminary X-ray crystallographic analysis of its globular C-terminal domain HpPal-C. Purified HpPal-C behaved as a dimer in solution. Crystals of HpPal-C were grown by the hanging drop vapour diffusion method using medium molecular weight polyethylene glycol (PEG) Smear as the precipitating agent. The crystals belong to the primitive orthorhombic space group P1 with unit cell parameters a = 50.7, b = 63.0, c = 75.1 Å. X-ray diffraction data were collected to 1.8 Å resolution on the Australian Synchrotron beamline MX2. Calculation of the Matthews coefficient (VM=2.24 Å3/Da) and molecular replacement showed that the asymmetric unit contains two protein subunits. This study is an important step towards elucidation of the non-canonical role of H. pylori Pal in the regulation, or function of, the flagellar motor.


Asunto(s)
Helicobacter pylori , Helicobacter pylori/química , Proteínas Bacterianas/metabolismo , Peptidoglicano/metabolismo , Australia , Cristalografía por Rayos X , Lipoproteínas/química , Lipoproteínas/metabolismo
9.
mBio ; 14(2): e0028323, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36852985

RESUMEN

The flagellar motor protein FliL is conserved across many microbes, but its exact role has been obscured by varying fliL mutant phenotypes. We reanalyzed results from fliL studies and found they utilized alleles that differed in the amount of N- and C-terminal regions that were retained. Alleles that retain the N-terminal cytoplasmic and transmembrane helix (TM) regions in the absence of the C-terminal periplasmic domain result in loss of motility, while alleles that completely lack the N-terminal region, independent of the periplasmic domain, retain motility. We then tested this prediction in Helicobacter pylori fliL and found support for the idea. This analysis suggests that FliL function may be more conserved across bacteria than previously thought, that it is not essential for motility, and that the N-terminal region has the negative ability to regulate motor function. IMPORTANCE FliL is a protein found in the flagellar motor of bacteria, but what it does was not clear. To study FliL function, scientists often remove it and see what happens. Loss of FliL was thought to have different effects depending on the microbe. We uncovered, however, that part of the confusion arose because scientists inadvertently removed different parts of the protein. Our analysis and data suggest that leaving the N-terminal regions blocks motility, while fully removing FliL allows normal motility. This finding will help scientists understand FliL because it clarifies what needs to be removed to fully eliminate the protein, and also that the N-terminal region can block motility.


Asunto(s)
Proteínas Bacterianas , Proteínas de la Membrana , Proteínas Bacterianas/metabolismo , Flagelos/fisiología , Proteínas de la Membrana/metabolismo , Periplasma/metabolismo , Helicobacter pylori
10.
JAC Antimicrob Resist ; 4(3): dlac048, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35668909

RESUMEN

Objectives: The widespread intestinal carriage of ESBL-producing Escherichia coli (ESBL E. coli) among both patients and healthy individuals is alarming. However, the global prevalence and trend of this MDR bacterium in healthcare settings remains undetermined. To address this knowledge gap, we performed a comparative meta-analysis of the prevalence in community and healthcare settings. Methods: Our systematic review included 133 articles published between 1 January 2000 and 22 April 2021 and indexed in PubMed, EMBASE or Google Scholar. A random-effects meta-analysis was performed to obtain the global pooled prevalence (community and healthcare settings). Subgroup meta-analyses were performed by grouping studies using the WHO regions and 5 year intervals of the study period. Results: We found that 21.1% (95% CI, 19.1%-23.2%) of inpatients in healthcare settings and 17.6% (95% CI, 15.3%-19.8%) of healthy individuals worldwide carried ESBL E. coli in their intestine. The global carriage rate in healthcare settings increased 3-fold from 7% (95% CI, 3.7%-10.3%) in 2001-05 to 25.7% (95% CI, 19.5%-32.0%) in 2016-20, whereas in community settings it increased 10-fold from 2.6% (95% CI, 1.2%-4.0%) to 26.4% (95% CI, 17.0%-35.9%) over the same period. Conclusions: The global and regional human intestinal ESBL E. coli carriage is increasing in both community and healthcare settings. Carriage rates were generally higher in healthcare than in community settings. Key relevant health organizations should perform surveillance and implement preventive measures to address the spread of ESBL E. coli in both settings.

11.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046042

RESUMEN

The flagellar motor stator is an ion channel nanomachine that assembles as a ring of the MotA5MotB2 units at the flagellar base. The role of accessory proteins required for stator assembly and activation remains largely enigmatic. Here, we show that one such assembly factor, the conserved protein FliL, forms an integral part of the Helicobacter pylori flagellar motor in a position that colocalizes with the stator. Cryogenic electron tomography reconstructions of the intact motor in whole wild-type cells and cells lacking FliL revealed that the periplasmic domain of FliL (FliL-C) forms 18 circumferentially positioned rings integrated with the 18 MotAB units. FliL-C formed partial rings in the crystal, and the crystal structure-based full ring model was consistent with the shape of the rings observed in situ. Our data suggest that each FliL ring is coaxially sandwiched between the MotA ring and the dimeric periplasmic MotB moiety of the stator unit and that the central hole of the FliL ring has density that is consistent with the plug/linker region of MotB in its extended, active conformation. Significant structural similarities were found between FliL-C and stomatin/prohibitin/flotillin/HflK/C domains of scaffolding proteins, suggesting that FliL acts as a scaffold. The binding energy released upon association of FliL with the stator units could be used to power the release of the plug helices. The finding that isolated FliL-C forms stable partial rings provides an insight into the putative mechanism by which the FliL rings assemble around the stator units.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Helicobacter pylori/fisiología , Proteínas de la Membrana/genética , Modelos Moleculares , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Complejos Multiproteicos/química , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Relación Estructura-Actividad
12.
Front Microbiol ; 12: 639490, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776972

RESUMEN

In the bacterial flagellar motor, the cell-wall-anchored stator uses an electrochemical gradient across the cytoplasmic membrane to generate a turning force that is applied to the rotor connected to the flagellar filament. Existing theoretical concepts for the stator function are based on the assumption that it anchors around the rotor perimeter by binding to peptidoglycan (P). The existence of another anchoring region on the motor itself has been speculated upon, but is yet to be supported by binding studies. Due to the recent advances in electron cryotomography, evidence has emerged that polar flagellar motors contain substantial proteinaceous periplasmic structures next to the stator, without which the stator does not assemble and the motor does not function. These structures have a morphology of disks, as is the case with Vibrio spp., or a round cage, as is the case with Helicobacter pylori. It is now recognized that such additional periplasmic components are a common feature of polar flagellar motors, which sustain higher torque and greater swimming speeds compared to peritrichous bacteria such as Escherichia coli and Salmonella enterica. This review summarizes the data available on the structure, composition, and role of the periplasmic scaffold in polar bacterial flagellar motors and discusses the new paradigm for how such motors assemble and function.

13.
Biophys Chem ; 272: 106577, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33756269

RESUMEN

The human gastric pathogen Helicobacter pylori relies on the uptake of host-provided nutrients for its proliferation and pathogenicity. ABC transporters that mediate import of small molecules into the cytoplasm of H. pylori employ their cognate periplasmic substrate-binding proteins (SBPs) for ligand capture in the periplasm. The genome of the mouse-adapted strain SS1 of H. pylori encodes eight ABC transporter-associated SBPs, but little is known about their specificity or structure. In this study, we demonstrated that the SBP annotated as ModA binds molybdate (MoO42-, KD = 3.8 nM) and tungstate (WO42-, KD = 7.8 nM). In addition, we showed that MetQ binds D-methionine (KD = 9.5 µM), but not L-methionine, which suggests the existence of as yet unknown pathway for L-methionine uptake. Homology modelling has led to identification of the ligand-binding residues.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Biología Computacional , Helicobacter pylori/química , Proteínas de Unión Periplasmáticas/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Helicobacter pylori/metabolismo , Proteínas de Unión Periplasmáticas/química
14.
J Antimicrob Chemother ; 76(1): 22-29, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33305801

RESUMEN

OBJECTIVES: Intestinal colonization by ESBL Escherichia coli and its association with community-acquired MDR infections is of great concern. This review determined the worldwide prevalence of human faecal ESBL E. coli carriage and its trend in the community over the past two decades. METHODS: A systematic literature search was conducted using PubMed, EMBASE and Google Scholar to retrieve articles published between 1 January 2000 and 13 February 2020 that contained data on the prevalence of faecal carriage of ESBL E. coli among healthy individuals. A cumulative (for the whole period) meta-analysis was used to estimate the global and regional pooled prevalence rates. Articles were grouped into study periods of 3 years, and subgroup meta-analyses were undertaken to examine the global pooled prevalence over time. RESULTS: Sixty-two articles covering 29 872 healthy persons were included in this meta-analysis. The cumulative (2003-18) global pooled prevalence of ESBL E. coli intestinal carriage in the community was 16.5% (95% CI 14.3%-18.7%; P  <  0.001). The pooled prevalence showed an upward trend, increasing from 2.6% (95% CI 1.6%-4.0%) in 2003-05 to 21.1% (95% CI 15.8%-27.0%) in 2015-18. Over the whole period, the highest carriage rate was observed in South-East Asia (27%; 95% CI 2.9%-51.3%), while the lowest occurred in Europe (6.0%; 95% CI 4.6%-7.5%). CONCLUSIONS: Globally, an 8-fold increase in the intestinal carriage rate of ESBL E. coli in the community has occurred over the past two decades. Prevention of its spread may require new therapeutic and public health strategies.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Portador Sano/epidemiología , Infecciones por Escherichia coli/epidemiología , Europa (Continente) , Heces , Humanos , Prevalencia , beta-Lactamasas/genética
15.
Biomolecules ; 10(5)2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403336

RESUMEN

Chemotaxis is an important virulence factor of the foodborne pathogen Campylobacter jejuni. Inactivation of chemoreceptor Tlp3 reduces the ability of C. jejuni to invade human and chicken cells and to colonise the jejunal mucosa of mice. Knowledge of the structure of the ligand-binding domain (LBD) of Tlp3 in complex with its ligands is essential for a full understanding of the molecular recognition underpinning chemotaxis. To date, the only structure in complex with a signal molecule is Tlp3 LBD bound to isoleucine. Here, we used in vitro and in silico screening to identify eight additional small molecules that signal through Tlp3 as attractants by directly binding to its LBD, and determined the crystal structures of their complexes. All new ligands (leucine, valine, α-amino-N-valeric acid, 4-methylisoleucine, ß-methylnorleucine, 3-methylisoleucine, alanine, and phenylalanine) are nonpolar amino acids chemically and structurally similar to isoleucine. X-ray crystallographic analysis revealed the hydrophobic side-chain binding pocket and conserved protein residues that interact with the ammonium and carboxylate groups of the ligands determine the specificity of this chemoreceptor. The uptake of hydrophobic amino acids plays an important role in intestinal colonisation by C. jejuni, and our study suggests that C. jejuni seeks out hydrophobic amino acids using chemotaxis.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Sitios de Unión , Calorimetría , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Simulación del Acoplamiento Molecular , Dominios Proteicos , Relación Estructura-Actividad , Temperatura
16.
Gut Pathog ; 12: 20, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318117

RESUMEN

With the rise of bacterial resistance to conventional antibiotics, re-purposing of Food and Drug Administration (FDA) approved drugs currently used to treat non-bacteria related diseases as new leads for antibacterial drug discovery has become an attractive alternative. Ethoxzolamide (EZA), an FDA-approved diuretic acting as a human carbonic anhydrase inhibitor, is known to kill the gastric pathogenic bacterium Helicobacter pylori in vitro via an, as yet, unknown mechanism. To date, EZA activity and resistance have been investigated for only one H. pylori strain, P12. We have now performed a susceptibility and resistance study with H. pylori strains SS1 and 26695. Mutants resistant to EZA were isolated, characterized and their genomes sequenced. Resistance-conferring mutations were confirmed by backcrossing the mutations into the parent strain. As with P12, resistance to EZA in strains SS1 and 26695 does not develop easily, since the rate of spontaneous resistance acquisition was less than 10-8. Acquisition of resistance was associated with mutations in 3 genes in strain SS1, and in 6 different genes in strain 26695, indicating that EZA targets multiple systems. All resistant isolates had mutations affecting cell wall synthesis and control of gene expression. EZA's potential for treating duodenal ulcers has already been demonstrated. Our findings suggest that EZA may be developed into a novel anti-H. pylori drug.

17.
Mol Plant Microbe Interact ; 33(4): 612-623, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31909676

RESUMEN

Motile bacteria follow gradients of nutrients or other environmental cues. Many bacterial chemoreceptors that sense exogenous amino acids contain a double Cache (dCache; calcium channels and chemotaxis receptors) ligand-binding domain (LBD). A growing number of studies suggest that broad-specificity dCache-type receptors that sense more than one amino acid are common. Here, we present an investigation into the mechanism by which the dCache LBD of the chemoreceptor CtaA from a plant growth-promoting rhizobacterium, Pseudomonas fluorescens, recognizes several chemically distinct amino acids. We established that amino acids that signal by directly binding to the CtaA LBD include ones with aliphatic (l-alanine, l-proline, l-leucine, l-isoleucine, l-valine), small polar (l-serine), and large charged (l-arginine) side chains. We determined the structure of CtaA LBD in complex with different amino acids, revealing that its ability to recognize a range of structurally and chemically distinct amino acids is afforded by its easily accessible plastic pocket, which can expand or contract according to the size of the ligand side chain. The amphipathic character of the pocket enables promiscuous interactions with both polar and nonpolar amino acids. The results not only clarify the means by which various amino acids are recognized by CtaA but also reveal that a conserved mobile lid over the ligand-binding pocket adopts the same conformation in all complexes, consistent with this being an important and invariant part of the signaling mechanism.


Asunto(s)
Proteínas Bacterianas , Grupo Citocromo b , Proteínas de la Membrana , Pseudomonas fluorescens , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Grupo Citocromo b/química , Grupo Citocromo b/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Dominios Proteicos , Pseudomonas fluorescens/química , Pseudomonas fluorescens/metabolismo
18.
J Enzyme Inhib Med Chem ; 34(1): 1660-1667, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31530039

RESUMEN

Ethoxzolamide (EZA), acetazolamide, and methazolamide are clinically used sulphonamide drugs designed to treat non-bacteria-related illnesses (e.g. glaucoma), but they also show antimicrobial activity against the gastric pathogen Helicobacter pylori. EZA showed the highest activity, and was effective against clinical isolates resistant to metronidazole, clarithromycin, and/or amoxicillin, suggesting that EZA kills H. pylori via mechanisms different from that of these antibiotics. The frequency of single-step spontaneous resistance acquisition by H. pylori was less than 5 × 10-9, showing that resistance to EZA does not develop easily. Resistance was associated with mutations in three genes, including the one that encodes undecaprenyl pyrophosphate synthase, a known target of sulphonamides. The data indicate that EZA impacts multiple targets in killing H. pylori. Our findings suggest that developing the approved anti-glaucoma drug EZA into a more effective anti-H. pylori agent may offer a faster and cost-effective route towards new antimicrobials with a novel mechanism of action.


Asunto(s)
Antibacterianos/farmacología , Etoxzolamida/farmacología , Helicobacter pylori/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Etoxzolamida/síntesis química , Etoxzolamida/química , Helicobacter pylori/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
19.
J Bacteriol ; 201(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31358613

RESUMEN

The gastric pathogen Helicobacter pylori has limited ability to use carbohydrates as a carbon source, relying instead on exogenous amino acids and peptides. Uptake of certain peptides by H. pylori requires an ATP binding cassette (ABC) transporter annotated dipeptide permease (Dpp). The transporter specificity is determined by its cognate substrate-binding protein DppA, which captures ligands in the periplasm and delivers them to the permease. Here, we show that, unlike previously characterized DppA proteins, H. pylori DppA binds, with micromolar affinity, peptides of diverse amino acid sequences ranging between two and eight residues in length. We present analysis of the 1.45-Å-resolution crystal structure of its complex with the tetrapeptide STSA, which provides a structural rationale for the observed broad specificity. Analysis of the molecular surface revealed a ligand-binding pocket that is large enough to accommodate peptides of up to nine residues in length. The structure suggests that H. pylori DppA is able to recognize a wide range of peptide sequences by forming interactions primarily with the peptide main chain atoms. The loop that terminates the peptide-binding pocket in DppAs from other bacteria is significantly shorter in the H. pylori protein, providing an explanation for its ability to bind longer peptides. The subsites accommodating the two N-terminal residues of the peptide ligand make the greatest contribution to the protein-ligand binding energy, in agreement with the observation that dipeptides bind with affinity close to that of longer peptides.IMPORTANCE The World Health Organization listed Helicobacter pylori as a high-priority pathogen for antibiotic development. The potential of using peptide transporters in drug design is well recognized. We discovered that the substrate-binding protein of the ABC transporter for peptides, termed dipeptide permease, is an unusual member of its family in that it directly binds peptides of diverse amino acid sequences, ranging between two and eight residues in length. We also provided a structural rationale for the observed broad specificity. Since the ability to import peptides as a source of carbon is critical for H. pylori, our findings will inform drug design strategies based on inhibition or fusion of membrane-impermeant antimicrobials with peptides.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Helicobacter pylori/crecimiento & desarrollo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Péptidos/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Helicobacter pylori/metabolismo , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos
20.
Drug Discov Ther ; 13(1): 52-58, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30880323

RESUMEN

Periplasmic binding proteins (PBPs) of Gram-negative bacteria sense essential nutrients and mediate their uptake by ATP-binding cassette (ABC) transporters. The gene for a PBP of H. pylori SS1, annotated as GlnH, is located within the glnPQH operon encoding an ABC importer system. In this study, GlnH has been expressed in E. coli and purified to > 98% homogeneity. The recombinant protein was folded according to the circular dichroism (CD) analysis and behaved as a monomer in solution. Crystals of GlnH have been grown by the hanging-drop vapour-diffusion method using polyethylene glycol (PEG) 4000 as a precipitating agent. The crystals belonged to the primitive monoclinic space group P21 with unit cell parameters a = 38.67, b = 93.36, c = 64.13 Å, ß = 93.72°. A complete X-ray diffraction data set was collected to 1.3 Å resolution from a single crystal using synchrotron radiation. Molecular replacement using this data revealed that the asymmetric unit contains a single molecule. This is a key step towards elucidation of the structural basis of the GlnH function.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Helicobacter pylori/metabolismo , Cristalización/métodos , Cristalografía por Rayos X/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA