Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
bioRxiv ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39026825

RESUMEN

Vitamin A/Retinoic Acid (Vit A/RA) signaling is essential for heart development. In cardiac progenitor cells (CPCs), RA signaling induces the expression of atrial lineage genes while repressing ventricular genes, thereby promoting the acquisition of an atrial cardiomyocyte cell fate. To achieve this, RA coordinates a complex regulatory network of downstream effectors that is not fully identified. To address this gap, we applied a functional genomics approach (i.e scRNAseq and snATACseq) to untreated and RA-treated human embryonic stem cells (hESCs)-derived CPCs. Unbiased analysis revealed that the Hippo effectors YAP1 and TEAD4 are integrated with the atrial transcription factor enhancer network, and that YAP1 is necessary for activation of RA-enhancers in CPCs. Furthermore, in vivo analysis of control and conditionally YAP1 KO mouse embryos (Sox2-cre) revealed that the expression of atrial lineage genes, such as NR2F2, is compromised by YAP1 deletion in the CPCs of the second heart field. Accordingly, we found that YAP1 is required for the formation of an atrial chamber but is dispensable for the formation of a ventricle, in hESC-derived patterned cardiac organoids. Overall, our findings revealed that YAP1 is a non-canonical effector of RA signaling essential for the acquisition of atrial lineages during cardiogenesis.

2.
J Vis Exp ; (208)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38949298

RESUMEN

Over the last decade, single-cell approaches have become the gold standard for studying gene expression dynamics, cell heterogeneity, and cell states within samples. Before single-cell advances, the feasibility of capturing the dynamic cellular landscape and rapid cell transitions during early development was limited. In this paper, a robust pipeline was designed to perform single-cell and nuclei analysis on mouse embryos from embryonic day E6.5 to E8, corresponding to the onset and completion of gastrulation. Gastrulation is a fundamental process during development that establishes the three germinal layers: mesoderm, ectoderm, and endoderm, which are essential for organogenesis. Extensive literature is available on single-cell omics applied to wild-type perigastrulating embryos. However, single-cell analysis of mutant embryos is still scarce and often limited to FACS-sorted populations. This is partially due to the technical constraints associated with the need for genotyping, timed pregnancies, the count of embryos with desired genotypes per pregnancy, and the number of cells per embryo at these stages. Here, a methodology is presented designed to overcome these limitations. This method establishes breeding and timed pregnancy guidelines to achieve a higher chance of synchronized pregnancies with desired genotypes. Optimization steps in the embryo isolation process coupled with a same-day genotyping protocol (3 h) allow for microdroplet-based single-cell to be performed on the same day, ensuring the high viability of cells and robust results. This method further includes guidelines for optimal nuclei isolations from embryos. Thus, these approaches increase the feasibility of single-cell approaches of mutant embryos at the gastrulation stage. We anticipate that this method will facilitate the analysis of how mutations shape the cellular landscape of the gastrula.


Asunto(s)
Gastrulación , Análisis de la Célula Individual , Animales , Ratones , Análisis de la Célula Individual/métodos , Gastrulación/genética , Femenino , Embrión de Mamíferos , Estratos Germinativos/citología , Análisis de Secuencia de ARN/métodos , Embarazo
3.
EMBO Rep ; 25(9): 3990-4012, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39075237

RESUMEN

Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of a childhood neurodegenerative disorder caused by AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that mouse models of AMPD2 deficiency exhibit predominant degeneration of the hippocampal dentate gyrus, despite a general reduction of brain GTP levels. Neurodegeneration-resistant regions accumulate micron-sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis, while these filaments are barely detectable in the hippocampal dentate gyrus. Furthermore, we show that IMPDH2 filament disassembly reduces GTP levels and impairs growth of neural progenitor cells derived from individuals with human AMPD2 deficiency. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation, opening the possibility of exploring the induction of IMPDH2 assembly as a therapy for neurodegeneration.


Asunto(s)
AMP Desaminasa , IMP Deshidrogenasa , Enfermedades Neurodegenerativas , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Guanosina Trifosfato/metabolismo , IMP Deshidrogenasa/metabolismo , IMP Deshidrogenasa/genética , Ratones Noqueados , Células-Madre Neurales/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/etiología , Esfingomielina Fosfodiesterasa , AMP Desaminasa/deficiencia , AMP Desaminasa/metabolismo
4.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746120

RESUMEN

Over the last decade, single-cell approaches have become the gold standard for studying gene expression dynamics, cell heterogeneity, and cell states within samples. Before single-cell advances, the feasibility of capturing the dynamic cellular landscape and rapid cell transitions during early development was limited. In this paper, we designed a robust pipeline to perform single-cell and nuclei analysis on mouse embryos from E6.5 to E8, corresponding to the onset and completion of gastrulation. Gastrulation is a fundamental process during development that establishes the three germinal layers: mesoderm, ectoderm, and endoderm, which are essential for organogenesis. Extensive literature is available on single-cell omics applied to WT perigastrulating embryos. However, single-cell analysis of mutant embryos is still scarce and often limited to FACS-sorted populations. This is partially due to the technical constraints associated with the need for genotyping, timed pregnancies, the count of embryos with desired genotypes per pregnancy, and the number of cells per embryo at these stages. Here, we present a methodology designed to overcome these limitations. This method establishes breeding and timed pregnancy guidelines to achieve a higher chance of synchronized pregnancies with desired genotypes. Optimization steps in the embryo isolation process coupled with FAST genotyping protocol (3 hours) allow for microdroplet-based single-cell to be performed on the same day, ensuring the high viability of cells and robust results. We also include guidelines for optimal nuclei isolations from embryos. Thus, these approaches increase the feasibility of single-cell approaches of mutant embryos at the gastrulation stage. We anticipate this method will facilitate the analysis of how mutations shape the cellular landscape of the gastrula. SUMMARY: We establish a pipeline for high-quality single-cell and nuclei suspensions of gastrulating mouse embryos for sequencing of single cells and nuclei.

5.
JCI Insight ; 9(10)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625743

RESUMEN

Dysregulated lipid homeostasis is emerging as a potential cause of neurodegenerative disorders. However, evidence of errors in lipid homeostasis as a pathogenic mechanism of neurodegeneration remains limited. Here, we show that cerebellar neurodegeneration caused by Sorting Nexin 14 (SNX14) deficiency is associated with lipid homeostasis defects. Recent studies indicate that SNX14 is an interorganelle lipid transfer protein that regulates lipid transport, lipid droplet (LD) biogenesis, and fatty acid desaturation, suggesting that human SNX14 deficiency belongs to an expanding class of cerebellar neurodegenerative disorders caused by altered cellular lipid homeostasis. To test this hypothesis, we generated a mouse model that recapitulates human SNX14 deficiency at a genetic and phenotypic level. We demonstrate that cerebellar Purkinje cells (PCs) are selectively vulnerable to SNX14 deficiency while forebrain regions preserve their neuronal content. Ultrastructure and lipidomic studies reveal widespread lipid storage and metabolism defects in SNX14-deficient mice. However, predegenerating SNX14-deficient cerebella show a unique accumulation of acylcarnitines and depletion of triglycerides. Furthermore, defects in LD content and telolysosome enlargement in predegenerating PCs suggest lipotoxicity as a pathogenic mechanism of SNX14 deficiency. Our work shows a selective cerebellar vulnerability to altered lipid homeostasis and provides a mouse model for future therapeutic studies.


Asunto(s)
Metabolismo de los Lípidos , Enfermedades Neurodegenerativas , Células de Purkinje , Nexinas de Clasificación , Animales , Humanos , Masculino , Ratones , Cerebelo/metabolismo , Cerebelo/patología , Modelos Animales de Enfermedad , Homeostasis , Gotas Lipídicas/metabolismo , Ratones Noqueados , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/genética , Células de Purkinje/metabolismo , Células de Purkinje/patología , Nexinas de Clasificación/metabolismo , Nexinas de Clasificación/genética
7.
bioRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38328116

RESUMEN

Metabolic dysregulation is one of the most common causes of pediatric neurodegenerative disorders. However, how the disruption of ubiquitous and essential metabolic pathways predominantly affect neural tissue remains unclear. Here we use mouse models of AMPD2 deficiency to study cellular and molecular mechanisms that lead to selective neuronal vulnerability to purine metabolism imbalance. We show that AMPD deficiency in mice primarily leads to hippocampal dentate gyrus degeneration despite causing a generalized reduction of brain GTP levels. Remarkably, we found that neurodegeneration resistant regions accumulate micron sized filaments of IMPDH2, the rate limiting enzyme in GTP synthesis. In contrast, IMPDH2 filaments are barely detectable in the hippocampal dentate gyrus, which shows a progressive neuroinflammation and neurodegeneration. Furthermore, using a human AMPD2 deficient neural cell culture model, we show that blocking IMPDH2 polymerization with a dominant negative IMPDH2 variant, impairs AMPD2 deficient neural progenitor growth. Together, our findings suggest that IMPDH2 polymerization prevents detrimental GTP deprivation in neurons with available GTP precursor molecules, providing resistance to neurodegeneration. Our findings open the possibility of exploring the involvement of IMPDH2 assembly as a therapeutic intervention for neurodegeneration.

8.
bioRxiv ; 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38260561

RESUMEN

Cis-regulatory elements (CREs) are critical in regulating gene expression, and yet understanding of CRE evolution remains challenging. Here, we constructed a comprehensive single-cell atlas of chromatin accessibility in Oryza sativa, integrating data from 103,911 nuclei representing 126 discrete cell states across nine distinct organs. We used comparative genomics to compare cell-type resolved chromatin accessibility between O. sativa and 57,552 nuclei from four additional grass species (Zea mays, Sorghum bicolor, Panicum miliaceum, and Urochloa fusca). Accessible chromatin regions (ACRs) had different levels of conservation depending on the degree of cell-type specificity. We found a complex relationship between ACRs with conserved noncoding sequences, cell-type specificity, conservation, and tissue-specific switching. Additionally, we found that epidermal ACRs were less conserved compared to other cell types, potentially indicating that more rapid regulatory evolution has occurred in the L1-derived epidermal layer of these species. Finally, we identified and characterized a conserved subset of ACRs that overlapped the repressive histone modification H3K27me3, implicating them as potentially silencer-like CREs maintained by evolution. Collectively, this comparative genomics approach highlights the dynamics of plant cell-type-specific CRE evolution.

9.
IUBMB Life ; 75(10): 880-892, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37409758

RESUMEN

Long noncoding RNAs (lncRNAs) have emerged as important regulators of gene expression in plants. They have been linked to a wide range of molecular mechanisms, including epigenetics, miRNA activity, RNA processing and translation, and protein localization or stability. In Arabidopsis, characterized lncRNAs have been implicated in several physiological contexts, including plant development and the response to the environment. Here we searched for lncRNA loci located nearby key genes involved in root development and identified the lncRNA ARES (AUXIN REGULATOR ELEMENT DOWNSTREAM SOLITARYROOT) downstream of the lateral root master gene IAA14/SOLITARYROOT (SLR). Although ARES and IAA14 are co-regulated during development, the knockdown and knockout of ARES did not affect IAA14 expression. However, in response to exogenous auxin, ARES knockdown impairs the induction of its other neighboring gene encoding the transcription factor NF-YB3. Furthermore, knockdown/out of ARES results in a root developmental phenotype in control conditions. Accordingly, a transcriptomic analysis revealed that a subset of ARF7-dependent genes is deregulated. Altogether, our results hint at the lncRNA ARES as a novel regulator of the auxin response governing lateral root development, likely by modulating gene expression in trans.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Largo no Codificante , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
bioRxiv ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37425875

RESUMEN

The KOLF2.1J iPSC line was recently proposed as a reference iPSC to promote the standardization of research studies in the stem cell field. Due to overall good performance differentiating to neural cell lineages, high gene editing efficiency, and absence of genetic variants associated to neurological disorders KOLF2.1J iPSC line was particularly recommended for neurodegenerative disease modeling. However, our work uncovers that KOLF2.1J hPSCs carry heterozygous small copy number variants (CNVs) that cause DTNBP1, JARID2 and ASTN2 haploinsufficiencies, all of which are associated with neurological disorders. We further determine that these CNVs arose in vitro over the course of KOLF2.1J iPSC generation from a healthy donor-derived KOLF2 iPSC line and affect the expression of DNTBP1, JARID2 and ASTN2 proteins in KOLF2.1J iPSCs and neural progenitors. Therefore, our study suggests that KOLF2.1J iPSCs carry genetic variants that may be deleterious for neural cell lineages. This data is essential for a careful interpretation of neural cell studies derived from KOLF2.1J iPSCs and highlights the need for a catalogue of iPSC lines that includes a comprehensive genome characterization analysis.

11.
Annu Rev Plant Biol ; 74: 139-163, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36889009

RESUMEN

SWITCH deficient SUCROSE NONFERMENTING (SWI/SNF) class chromatin remodeling complexes (CRCs) use the energy derived from ATP hydrolysis to facilitate access of proteins to the genomic DNA for transcription, replication, and DNA repair. Uniquely, SWI/SNF CRCs can both slide the histone octamer along the DNA or eject it from the DNA. Given their ability to change the chromatin status quo, SWI/SNF remodelers are critical for cell fate reprogramming with pioneer and other transcription factors, for responses to environmental challenges, and for disease prevention. Recent cryo-electron microscopy and mass spectrometry approaches have uncovered different subtypes of SWI/SNF complexes with unique properties and functions. At the same time, tethering or rapid depletion and inactivation of SWI/SNF have provided novel insight into SWI/SNF requirements for enhancer activity and into balancing chromatin compaction and accessibility in concert with Polycomb complexes. Given their importance, SWI/SNF recruitment to genomic locations by transcription factors and their biochemical activity is tightly controlled. This review focuses on recent advances in our understanding of SWI/SNF CRCs in animals and plants and discusses the multiple nuclear and biological roles of SWI/SNF CRCs and how SWI/SNF activity is altered by complex subunit composition, posttranslational modifications, and the chromatin context to support proper development and response to extrinsic cues.


Asunto(s)
Cromatina , Factores de Transcripción , Animales , Cromatina/genética , Microscopía por Crioelectrón , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ADN , Proteínas del Grupo Polycomb/genética
12.
Plant Cell ; 34(12): 4795-4815, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36124976

RESUMEN

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is widely used to identify factor binding to genomic DNA and chromatin modifications. ChIP-seq data analysis is affected by genomic regions that generate ultra-high artifactual signals. To remove these signals from ChIP-seq data, the Encyclopedia of DNA Elements (ENCODE) project developed comprehensive sets of regions defined by low mappability and ultra-high signals called blacklists for human, mouse (Mus musculus), nematode (Caenorhabditis elegans), and fruit fly (Drosophila melanogaster). However, blacklists are not currently available for many model and nonmodel species. Here, we describe an alternative approach for removing false-positive peaks called greenscreen. Greenscreen is easy to implement, requires few input samples, and uses analysis tools frequently employed for ChIP-seq. Greenscreen removes artifactual signals as effectively as blacklists in Arabidopsis thaliana and human ChIP-seq dataset while covering less of the genome and dramatically improves ChIP-seq peak calling and downstream analyses. Greenscreen filtering reveals true factor binding overlap and occupancy changes in different genetic backgrounds or tissues. Because it is effective with as few as two inputs, greenscreen is readily adaptable for use in any species or genome build. Although developed for ChIP-seq, greenscreen also identifies artifactual signals from other genomic datasets including Cleavage Under Targets and Release Using Nuclease. We present an improved ChIP-seq pipeline incorporating greenscreen that detects more true peaks than other methods.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Drosophila melanogaster , Humanos , Animales , Ratones , Drosophila melanogaster/genética , Inmunoprecipitación de Cromatina/métodos , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
13.
Mol Plant ; 15(5): 840-856, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35150931

RESUMEN

Clustered organization of biosynthetic non-homologous genes is emerging as a characteristic feature of plant genomes. The co-regulation of clustered genes seems to largely depend on epigenetic reprogramming and three-dimensional chromatin conformation. In this study, we identified the long non-coding RNA (lncRNA) MARneral Silencing (MARS), localized inside the Arabidopsis marneral cluster, which controls the local epigenetic activation of its surrounding region in response to abscisic acid (ABA). MARS modulates the POLYCOMB REPRESSIVE COMPLEX 1 (PRC1) component LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) binding throughout the cluster in a dose-dependent manner, determining H3K27me3 deposition and chromatin condensation. In response to ABA, MARS decoys LHP1 away from the cluster and promotes the formation of a chromatin loop bringing together the MARNERAL SYNTHASE 1 (MRN1) locus and a distal ABA-responsive enhancer. The enrichment of co-regulated lncRNAs in clustered metabolic genes in Arabidopsis suggests that the acquisition of novel non-coding transcriptional units may constitute an additional regulatory layer driving the evolution of biosynthetic pathways.


Asunto(s)
Arabidopsis , ARN Largo no Codificante , Ácido Abscísico/farmacología , Arabidopsis/genética , Cromatina/genética , Homólogo de la Proteína Chromobox 5 , Epigénesis Genética , ARN Largo no Codificante/genética , Triterpenos
14.
Biochem Soc Trans ; 50(1): 403-412, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-34940811

RESUMEN

As sessile organisms, plants have evolved sophisticated mechanisms of gene regulation to cope with changing environments. Among them, long non-coding RNAs (lncRNAs) are a class of RNAs regulating gene expression at both transcriptional and post-transcriptional levels. They are highly responsive to environmental cues or developmental processes and are generally involved in fine-tuning plant responses to these signals. Roots, in addition to anchoring the plant to the soil, allow it to absorb the major part of its mineral nutrients and water. Furthermore, roots directly sense environmental constraints such as mineral nutrient availability and abiotic or biotic stresses and dynamically adapt their growth and architecture. Here, we review the role of lncRNAs in the control of root growth and development. In particular, we highlight their action in fine-tuning primary root growth and the development of root lateral organs, such as lateral roots and symbiotic nodules. Lastly, we report their involvement in plant response to stresses and the regulation of nutrient assimilation and homeostasis, two processes leading to the modification of root architecture. LncRNAs could become interesting targets in plant breeding programs to subtly acclimate crops to coming environmental changes.


Asunto(s)
ARN Largo no Codificante , Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas , Crecimiento y Desarrollo , Minerales/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Estrés Fisiológico
15.
Gigascience ; 10(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34282452

RESUMEN

BACKGROUND: Deep learning methods have outperformed previous techniques in most computer vision tasks, including image-based plant phenotyping. However, massive data collection of root traits and the development of associated artificial intelligence approaches have been hampered by the inaccessibility of the rhizosphere. Here we present ChronoRoot, a system that combines 3D-printed open-hardware with deep segmentation networks for high temporal resolution phenotyping of plant roots in agarized medium. RESULTS: We developed a novel deep learning-based root extraction method that leverages the latest advances in convolutional neural networks for image segmentation and incorporates temporal consistency into the root system architecture reconstruction process. Automatic extraction of phenotypic parameters from sequences of images allowed a comprehensive characterization of the root system growth dynamics. Furthermore, novel time-associated parameters emerged from the analysis of spectral features derived from temporal signals. CONCLUSIONS: Our work shows that the combination of machine intelligence methods and a 3D-printed device expands the possibilities of root high-throughput phenotyping for genetics and natural variation studies, as well as the screening of clock-related mutants, revealing novel root traits.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Fenotipo , Raíces de Plantas , Plantas
16.
Plant Physiol ; 183(3): 1058-1072, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32404413

RESUMEN

Root architecture varies widely between species; it even varies between ecotypes of the same species, despite strong conservation of the coding portion of their genomes. By contrast, noncoding RNAs evolve rapidly between ecotypes and may control their differential responses to the environment, since several long noncoding RNAs (lncRNAs) are known to quantitatively regulate gene expression. Roots from ecotypes Columbia and Landsberg erecta of Arabidopsis (Arabidopsis thaliana) respond differently to phosphate starvation. Here, we compared transcriptomes (mRNAs, lncRNAs, and small RNAs) of root tips from these two ecotypes during early phosphate starvation. We identified thousands of lncRNAs that were largely conserved at the DNA level in these ecotypes. In contrast to coding genes, many lncRNAs were specifically transcribed in one ecotype and/or differentially expressed between ecotypes independent of phosphate availability. We further characterized these ecotype-related lncRNAs and studied their link with small interfering RNAs. Our analysis identified 675 lncRNAs differentially expressed between the two ecotypes, including antisense RNAs targeting key regulators of root-growth responses. Misregulation of several lincRNAs showed that at least two ecotype-related lncRNAs regulate primary root growth in ecotype Columbia. RNA-sequencing analysis following deregulation of lncRNA NPC48 revealed a potential link with root growth and transport functions. This exploration of the noncoding transcriptome identified ecotype-specific lncRNA-mediated regulation in root apexes. The noncoding genome may harbor further mechanisms involved in ecotype adaptation of roots to different soil environments.


Asunto(s)
Arabidopsis/genética , Ecotipo , Fosfatos/deficiencia , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , ARN Largo no Codificante/genética , Estrés Fisiológico/genética , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Variación Genética , Raíces de Plantas/fisiología , Estrés Fisiológico/fisiología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA