Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Food Chem ; 441: 138391, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38218153

RESUMEN

Inoculation modes are known to affect yeast behavior. Here, we characterized the impact of ADY and pre-culturing on the composition of the resulting wine, fermented by four commercial strains of Saccharomyces cerevisiae. Classical oenological parameters were not affected by the yeast inoculation mode. Using an untargeted metabolomic approach, a significant distinction in wine composition was noted regardless of the strain between the two inoculation modes, each associated with a specific metabolomic signature. 218 and 895 biomarkers were annotated, respectively, for ADYs associated with the preservation of wine polyphenols, and for pre-cultures related to the modulation of yeast nitrogen metabolism. Volatilome analysis revealed that the ester family was that most impacted by the inoculation mode whatever the strain. Ester production was enhanced in ADY condition. For the first time, the complete reprogramming of the yeast metabolism was revealed as a function of yeast preparation, which significantly impacts its volatilome and exometabolome.


Asunto(s)
Vino , Levadura Seca , Saccharomyces cerevisiae/metabolismo , Vino/análisis , Biomarcadores/metabolismo , Ésteres/metabolismo , Fermentación
2.
Foods ; 12(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37959046

RESUMEN

Three Metschnikowia strains marketed as bioprotection yeasts were studied to compare their antimicrobial effect on a mixture of two Hanseniaspora yeast strains in synthetic must at 12 °C, mimicking pre-fermentative maceration by combining different approaches. The growth of the different strains was monitored, their nitrogen and oxygen requirements were characterised, and their metabolomic footprint in single and co-cultures studied. Only the M. fructicola strain and one M. pulcherrima strains colonised the must and induced the rapid decline of Hanseniaspora. The efficiency of these two strains followed different inhibition kinetics. Furthermore, the initial ratio between Metschnikowia and Hanseniaspora was an important factor to ensure optimal bioprotection. Nutrient consumption kinetics showed that apiculate yeasts competed with Metschnikowia strains for nutrient accessibility. However, this competition did not explain the observed bioprotective effect, because of the considerable nitrogen content remaining on the single and co-cultures. The antagonistic effect of Metschnikowia on Hanseniaspora probably implied another form of amensalism. For the first time, metabolomic analyses of the interaction in a bioprotection context were performed after the pre-fermentative maceration step. A specific footprint of the interaction was observed, showing the strong impact of the interaction on the metabolic modulation of the yeasts, especially on the nitrogen and vitamin pathways.

3.
Food Res Int ; 174(Pt 2): 113648, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37981362

RESUMEN

While most producers in recent decades have relied on commercial yeasts (ADY) as their primary choice given their reliability and reproducibility, the fear of standardising the taste and properties of wine has led to the employment of alternative strategies that involve autochthonous yeasts such as pied de cuve (PdC) and spontaneous fermentation (SF). However, the impact of different fermentation strategies on wine has been a subject of debate and speculation. Consequently, this study describes, for the first time, the differences between the three kinds of fermentation at the metabolomic, chemical, and sensory levels in two wines: Chardonnay and Pinot Noir. The results showed how the yeast chosen significantly impacted the molecular composition of the wines, as revealed by metabolomic analysis that identified biomarkers with varying chemical compositions according to the fermentation modality. Notably, higher numbers of lipid markers were found for SF and PdC than ADY, which contained more peptides. Key molecules from the metabolic amino acid pathway, which are addressed in this article, showed evidence of such variations. In addition, the analysis of volatile aromatic compounds revealed an increase in groups of compounds specific to each fermentation. The sensorial analysis of Chardonnay wine showed a more qualitative sensory outcome (Higher fruit intensity) for ADY and SF compared to PdC. Our finding challenges the common speculation among wine producers that autochthonous yeast fermentations may offer greater complexity and uniqueness in comparison to commercial yeast fermentations.


Asunto(s)
Vino , Levadura Seca , Saccharomyces cerevisiae/metabolismo , Vino/análisis , Fermentación , Reproducibilidad de los Resultados
4.
Food Microbiol ; 115: 104330, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567622

RESUMEN

Although vitamins are prime actors in yeast metabolism, the nature and the extent of their requirement in Saccharomyces cerevisiae in winemaking remains little understood. To fill this gap, the evolution of 8 water-soluble vitamins and their diverse vitamers during its alcoholic fermentation in a synthetic must medium was monitored, providing the first evidence of the consumption of vitamers by five commercial S. cerevisiae strains, and highlighting the existence of preferential vitameric sources for its nutrition. The vitamins required by the yeast, B1, B5, and B8, were then identified, and the nature of their requirement characterized, strongly asserting the required trait of B1 for fermentation, B8 for growth, and B5 for both processes. The extent of the requirement for B5, that with the most impact of the three vitamins, was then quantified in three S. cerevisiae strains, resulting in the conclusion that 750 µg.L-1 should prove sufficient to cover the yeast's requirements. This investigation offers the first insight into S. cerevisiae vitaminic requirements for winemaking.


Asunto(s)
Saccharomyces cerevisiae , Vino , Saccharomyces cerevisiae/metabolismo , Vino/análisis , Vitaminas/metabolismo , Fermentación
5.
Food Microbiol ; 115: 104332, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567637

RESUMEN

Considering the growing interest in non-Saccharomyces wine yeasts, and notably in the context of mixed fermentations with S. cerevisiae, understanding their nutritional behaviors is essential to ensure better management of these fermentations. The vitaminic consumption of three non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima and Torulaspora delbrueckii) was investigated during their growth in wine-like conditions, providing initial evidence that they consume different vitamers. The vitamin consumption profiles during their growth highlighted releases of certain vitamers by the yeasts before re-assimilation, strongly suggesting the existence of synthesis pathways. Not only did the essential character of vitamin B1, in particular, appear to be a trait common to these yeasts, since all its vitamers are consumed, this investigation also provided evidence of the existence of species-dependent preferences for their vitaminic sources. These different behaviors were quite striking in certain vitamers, as was observed in nicotinamide: while it was consumed by T. delbrueckii, it was left untouched by S. bacillaris and produced by M. pulcherrima during growth. Furthermore, this offers grounds for further investigation into these yeasts' requirements, and provides the first tool for managing vitamin resources during mixed fermentations with S. cerevisiae, and for preventing nutritive deficiencies from occurring.

6.
Front Plant Sci ; 14: 1141700, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180397

RESUMEN

In the past, most grapevine trunk diseases (GTDs) have been controlled by treatments with sodium arsenite. For obvious reasons, sodium arsenite was banned in vineyards, and consequently, the management of GTDs is difficult due to the lack of methods with similar effectiveness. Sodium arsenite is known to have a fungicide effect and to affect the leaf physiology, but its effect on the woody tissues where the GTD pathogens are present is still poorly understood. This study thus focuses on the effect of sodium arsenite in woody tissues, particularly in the interaction area between asymptomatic wood and necrotic wood resulting from the GTD pathogens' activities. Metabolomics was used to obtain a metabolite fingerprint of sodium arsenite treatment and microscopy to visualize its effects at the histo-cytological level. The main results are that sodium arsenite impacts both metabolome and structural barriers in plant wood. We reported a stimulator effect on plant secondary metabolites in the wood, which add to its fungicide effect. Moreover, the pattern of some phytotoxins is affected, suggesting the possible effect of sodium arsenite in the pathogen metabolism and/or plant detoxification process. This study brings new elements to understanding the mode of action of sodium arsenite, which is useful in developing sustainable and eco-friendly strategies to better manage GTDs.

7.
Foods ; 12(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36900489

RESUMEN

Vitamins are major cofactors to numerous key metabolic pathways in enological yeasts, and both thiamine and biotin, notably, are believed to be essential to yeast fermentation and growth, respectively. In order to further assess and clarify their role in winemaking, and in the resulting wine, alcoholic fermentations of a commercial Saccharomyces cerevisiae active dried yeast were conducted in synthetic media containing various concentrations of both vitamins. Growth and fermentation kinetics were monitored and proved the essential character of biotin in yeast growth, and of thiamine in fermentation. The synthetic wine volatile compounds were quantified, and notable influences of both vitamins appeared, through a striking positive effect of thiamine on the production of higher alcohols, and of biotin on fatty acids. Beyond the evidence of this influence on fermentations and on the production of volatiles, this work proves, for the first time, the impact held by vitamins on wine yeasts' exometabolome, investigated through an untargeted metabolomic analysis. This highlighted chemical differences in the composition of synthetic wines through a notably marked influence of thiamine on 46 named S. cerevisiae metabolic pathways, and especially in amino acid-associated metabolic pathways. This provides, overall, the first evidence of the impact held by both vitamins on the wine.

8.
Food Chem ; 398: 133860, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35964563

RESUMEN

Although prime compounds in yeast metabolism, vitamins in oenology have remained mostly unexplored for decades. Here, a premier characterization of the vitamers in white grape musts has been drawn. A RP-HPLC method has therefore been developed for their direct analysis in musts, allowing for the determination of 19 different vitamers from 8 water-soluble vitaminic groups, including thiamine forms T, TMP and TPP, with LODs between 0.1 and 45.9 µg.L-1 and LOQs between 0.4 and 137.8 µg.L-1. A resulting characterization of 85 grape musts has been drawn from their vitaminic composition. Plus, the use of neither sulfites nor filtration affects the must vitamin content. The method stands as a useful tool for the later determination of yeast requirements, or impact of winemaking products on vitamins. The method has, overall, proven as practical and sensitive, for rapid identification of vitamins and vitamers in musts.


Asunto(s)
Vitaminas , Vitis , Cromatografía Líquida de Alta Presión/métodos , Saccharomyces cerevisiae , Tiamina/análisis , Vitamina A/análisis , Vitamina K/análisis , Vitaminas/análisis
9.
Microorganisms ; 10(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35456831

RESUMEN

Integrating fluorescent genes including eGFP in the yeast genome is common practice for various applications, including cell visualization and population monitoring. The transformation of a commercial S. cerevisiae strain by integrating a cassette including a gene encoding an EGFP protein in the HO gene was carried out using CRISPR-Cas9 technology. Although this type of integration is often used and described as neutral at the phenotypic level of the cell, we have highlighted that under alcoholic fermentation (in a Chardonnay must), it has an impact on the exometabolome. We observed 41 and 82 unique biomarkers for the S3 and S3GFP strains, respectively, as well as 28 biomarkers whose concentrations varied significantly between the wild-type and the modified strains. These biomarkers were mainly found to correspond to peptides. Despite similar phenotypic growth and fermentation parameters, high-resolution mass spectrometry allowed us to demonstrate, for the first time, that the peptidome is modified when integrating this cassette in the HO gene.

10.
Metabolites ; 12(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35323678

RESUMEN

Kombucha is a fermented beverage obtained through the activity of a complex microbial community of yeasts and bacteria. Exo-metabolomes of kombucha microorganisms were analyzed using FT-ICR-MS to investigate their interactions. A simplified set of microorganisms including two yeasts (Brettanomyces bruxellensis and Hanseniaspora valbyensis) and one acetic acid bacterium (Acetobacter indonesiensis) was used to investigate yeast-yeast and yeast-acetic acid bacterium interactions. A yeast-yeast interaction was characterized by the release and consumption of fatty acids and peptides, possibly in relationship to commensalism. A yeast-acetic acid bacterium interaction was different depending on yeast species. With B. bruxellensis, fatty acids and peptides were mainly produced along with consumption of sucrose, fatty acids and polysaccharides. In opposition, the presence of H. valbyensis induced mainly the decrease of polyphenols, peptides, fatty acids, phenolic acids and putative isopropyl malate and phenylpyruvate and few formulae have been produced. With all three microorganisms, the formulae involved with the yeast-yeast interactions were consumed or not produced in the presence of A. indonesiensis. The impact of the yeasts' presence on A. indonesiensis was consistent regardless of the yeast species with a commensal consumption of compounds associated to the acetic acid bacterium by yeasts. In detail, hydroxystearate from yeasts and dehydroquinate from A. indonesiensis were potentially consumed in all cases of yeast(s)-acetic acid bacterium pairing, highlighting mutualistic behavior.

11.
Metabolites ; 12(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35208234

RESUMEN

Kombucha is a traditional fermented beverage obtained from the transformation of sugared black tea by a community of yeasts and bacteria. Kombucha production recently became industrialized, but its quality standards remain poorly defined. Metabolomic analyses were applied using FT-ICR-MS to characterize the impacts of production phases and the type of tea on the non-volatile chemical composition of kombucha. Independently from tea type, the first phase of acidification in open vessel was characterized by the release of gluconate and gallate from acetic acid bacteria metabolism and probably from polymeric polyphenols, respectively. The second phase of carbonation in closed vessel induced a consumption or transformation of oleic acid that could be consecutive of oxygen limitation. The first phase had the most impact on molecular diversity, but tea type mainly influenced the global composition in polyphenol profile. Black tea polyphenols were more impacted by microbial activity compared to green tea polyphenols.

12.
Front Microbiol ; 13: 1032842, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36845971

RESUMEN

Yeast co-inoculations in winemaking are often studied in the framework of modulating the aromatic profiles of wines. Our study aimed to investigate the impact of three cocultures and corresponding pure cultures of Saccharomyces cerevisiae on the chemical composition and the sensory profile of Chardonnay wine. Coculture makes it possible to obtain completely new aromatic expressions that do not exist in the original pure cultures attributed to yeast interactions. Esters, fatty acids and phenol families were identified as affected. The sensory profiles and metabolome of the cocultures, corresponding pure cultures and associated wine blends from both pure cultures were found to be different. The coculture did not turn out to be the addition of the two pure culture wines, indicating the impact of interaction. High resolution mass spectrometry revealed thousands of cocultures biomarkers. The metabolic pathways involved in these wine composition changes were highlighted, most of them belonging to nitrogen metabolism.

13.
Microorganisms ; 9(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34835452

RESUMEN

Alcoholic fermentation is known to be a key stage in the winemaking process that directly impacts the composition and quality of the final product. Twelve wines were obtained from fermentations of Chardonnay must made with twelve different commercial wine yeast strains of Saccharomyces cerevisiae. In our study, FT-ICR-MS, GC-MS, and sensory analysis were combined with multivariate analysis. Ultra-high-resolution mass spectrometry (uHRMS) was able to highlight hundreds of metabolites specific to each strain from the same species, although they are characterized by the same technological performances. Furthermore, the significant involvement of nitrogen metabolism in this differentiation was considered. The modulation of primary metabolism was also noted at the volatilome and sensory levels. Sensory analysis allowed us to classify wines into three groups based on descriptors associated with white wine. Thirty-five of the volatile compounds analyzed, including esters, medium-chain fatty acids, superior alcohols, and terpenes discriminate and give details about differences between wines. Therefore, phenotypic differences within the same species revealed metabolic differences that resulted in the diversity of the volatile fraction that participates in the palette of the sensory pattern. This original combination of metabolomics with the volatilome and sensory approaches provides an integrative vision of the characteristics of a given strain. Metabolomics shine the new light on intraspecific discrimination in the Saccharomyces cerevisiae species.

14.
Compr Rev Food Sci Food Saf ; 20(3): 2991-3035, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33884746

RESUMEN

Vitamins are essential compounds to yeasts, and notably in winemaking contexts. Vitamins are involved in numerous yeast metabolic pathways, including those of amino acids, fatty acids, and alcohols, which suggests their notable implication in fermentation courses, as well as in the development of aromatic compounds in wines. Although they are major components in the course of those microbial processes, their significance and impact have not been extensively studied in the context of winemaking and wine products, as most of the studies focusing on the subject in the past decades have relied on relatively insensitive and imprecise analytical methods. Therefore, this review provides an extensive overview of the current knowledge regarding the impacts of vitamins on grape must fermentations, wine-related yeast metabolisms, and requirements, as well as on the profile of wine sensory characteristics. We also highlight the methodologies and techniques developed over time to perform vitamin analysis in wines, and assess the importance of precisely defining the role played by vitamins in winemaking processes, to ensure finer control of the fermentation courses and product characteristics in a highly complex matrix.


Asunto(s)
Vitis , Vino , Fermentación , Saccharomyces cerevisiae , Vitaminas , Vino/análisis
15.
Front Microbiol ; 11: 1308, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612594

RESUMEN

In wine, one method of limiting the addition of sulphites, a harmful and allergenic agent, is bio-protection. This practice consists of the early addition of microorganisms on grape must before fermentation. Non-Saccharomyces yeasts have been proposed as an interesting alternative to sulphite addition. However, scientific data proving the effectiveness of bio-protection remains sparse. This study provides the first analysis of the chemical and microbiological effects of a Metschnikowia pulcherrima strain inoculated at the beginning of the red winemaking process in three wineries as an alternative to sulphiting. Like sulphiting, bio-protection effectively limited the growth of spoilage microbiota and had no influence on the phenolic compounds protecting musts and wine from oxidation. The bio-protection had no effect on the volatile compounds and the sensory differences were dependent on the experimental sites. However, a non-targeted metabolomic analysis by FTICR-MS highlighted a bio-protection signature.

16.
Phytopathology ; 110(11): 1821-1837, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32597304

RESUMEN

Botryosphaeria dieback is one of the most significant grapevine trunk diseases that affects the sustainability of the vineyards and provokes economic losses. The causal agents, Botryosphaeriaceae species, live in and colonize the wood of the perennial organs causing wood necrosis. Diseased vines show foliar symptoms, chlorosis, or apoplexy, associated to a characteristic brown stripe under the bark. According to the susceptibility of the cultivars, specific proteins such as PR-proteins and other defense-related proteins are accumulated in the brown stripe compared with the healthy woody tissues. In this study, we enhanced the characterization of the brown stripe and the healthy wood by obtaining a metabolite profiling for the three cultivars Chardonnay, Gewurztraminer, and Mourvèdre to deeper understand the interaction between the Botryosphaeria dieback pathogens and grapevine. The study confirmed a specific pattern according to the cultivar and revealed significant differences between the brown stripe and the healthy wood, especially for phytochemical and lipid compounds. This is the first time that such chemical discrimination was made and that lipids were so remarkably highlighted in the interaction of Botryosphaeriaceae species and grapevine. Their role in the disease development is discussed.


Asunto(s)
Ascomicetos , Vitis , Metabolómica , Enfermedades de las Plantas , Madera
17.
Food Chem ; 323: 126748, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32304953

RESUMEN

Understanding the chemical composition of whisky and the impact of each step in the manufacturing process provides a basis for responding to the challenges of producing high quality spirits. In this study, the objective was to discriminate whiskies according to their geographical origin and authenticate the maturation time in cask based on the non-volatile profiles. The combination of FT-ICR-MS and chemometrics allowed the distinction of whiskies from four geographical origins in Scotland (Highlands, Lowlands, Speyside and Islay). Statistical modeling was also used to discriminate whiskies according to the maturation time in cask and reveal chemical markers associated with the ageing regardless of the origin or the production process. Interestingly, the flow of transfer of compounds from wood barrels to distillates is not constant and homogeneous over the maturation time. The largest transfer of compounds from the barrel to the whisky was observed around twelve years of maturation.

18.
Microorganisms ; 8(4)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32326124

RESUMEN

During the winemaking process, alcoholic fermentation is carried out by a consortium of yeasts in which interactions occurs. The consequences of these interactions on the wine matrix have been widely described for several years with the aim of controlling the winemaking process as well as possible. In this review, we highlight the wide diversity of methodologies used to study these interactions, and their underlying mechanisms and consequences on the final wine composition and characteristics. The wide variety of matrix parameters, yeast couples, and culture conditions have led to contradictions between the results of the different studies considered. More recent aspects of modifications in the composition of the matrix are addressed through different approaches that have not been synthesized recently. Non-volatile and volatile metabolomics, as well as sensory analysis approaches are developed in this paper. The description of the matrix composition modification does not appear sufficient to explain interaction mechanisms, making it vital to take an integrated approach to draw definite conclusions on them.

19.
Int J Food Microbiol ; 318: 108464, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-31816527

RESUMEN

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. The ability to form biofilm is a potential resistance strategy, although it has been given little attention so far for this yeast. In this work, the capacity to form biofilm and its structure were explored in YPD medium and in wine. Using microsatellite analysis, 65 isolates were discriminated into 5 different genetic groups from which 12 strains were selected. All 12 strains were able to form biofilm in YPD medium on a polystyrene surface. The presence of microcolonies, filamentous cells and extracellular polymeric substances, constituting the structure of the biofilm despite a small thickness, were highlighted using confocal and electronic microscopy. Moreover, different cell morphologies according to genetic groups were highlighted. The capacity to form biofilm in wine was also revealed for two selected strains. The impact of wine on biofilms was demonstrated with firstly considerable biofilm cell release and secondly growth of these released biofilm cells, both in a strain dependent manner. Finally, B. bruxellensis has been newly described as a producer of chlamydospore-like structures in wine, for both planktonic and biofilm lifestyles.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Brettanomyces/fisiología , Vino/microbiología , Brettanomyces/citología , Brettanomyces/genética , Microbiología de Alimentos , Vino/análisis
20.
NPJ Sci Food ; 3: 14, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396559

RESUMEN

The sporadic oxidation of white wines remains an open question, making wine shelf life a subjective debate. Through a multidisciplinary synoptic approach performed as a remarkable case study on aged bottles of white wine, this work unraveled a yet unexplored route for uncontrolled oxidation. By combining sensory evaluation, chemical and metabolomics analyses of the wine, and investigating oxygen transfer through the bottleneck/stopper, this work elucidates the importance of the glass/cork interface. It shows unambiguously that the transfer of oxygen at the interface between the cork stopper and the glass bottleneck must be considered a potentially significant contributor to oxidation state during the bottle aging, leading to a notable modification of a wine's chemical signature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA