Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 900: 165868, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37516186

RESUMEN

Enhanced nitrogen (N) deposition due to combustion of fossil fuels and agricultural fertilization is a global phenomenon which has severely altered carbon (C) and N cycling in temperate forest ecosystems in the northern hemisphere. Although deadwood holds a substantial amount of C in forest ecosystems and thus plays a crucial role in nutrient cycling, the effect of increased N deposition on microbial processes and communities, wood chemical traits and deadwood mass loss remains unclear. Here, we simulated high N deposition rates by adding reactive N in form of ammonium-nitrate (40 kg N ha-1 yr-1) to deadwood of 13 temperate tree species over nine years in a field experiment in Germany. Non-treated deadwood from the same logs served as control with background N deposition. Our results show that chronically elevated N levels alters deadwood mass loss alongside respiration, enzymatic activities and wood chemistry depending on tree clade and species. In gymnosperm deadwood, elevated N increased mass loss by +38 %, respiration by +37 % and increased laccase activity 12-fold alongside increases of white-rot fungal abundance +89 % (p = 0.03). Furthermore, we observed marginally significant (p = 0.06) shifts of bacterial communities in gymnosperm deadwood. In angiosperm deadwood, we did not detect consistent effects on mass loss, physico-chemical properties, extracellular enzymatic activity or changes in microbial communities except for changes in abundance of 10 fungal OTUs in seven tree species and 28 bacterial OTUs in 10 tree species. We conclude that N deposition alters decomposition processes exclusively in N limited gymnosperm deadwood in the long term by enhancing fungal activity as expressed by increases in respiration rate and extracellular enzyme activity with minor shifts in decomposing microbial communities. By contrast, deadwood of angiosperm tree species had higher N concentrations and mass loss as well as community composition did not respond to N addition.


Asunto(s)
Magnoliopsida , Microbiota , Hongos , Nitrógeno/análisis , Cycadopsida , Bosques , Árboles/microbiología , Bacterias , Microbiología del Suelo , Suelo
2.
Microorganisms ; 9(7)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34361890

RESUMEN

Nematodes represent a diverse and ubiquitous group of metazoans in terrestrial environments. They feed on bacteria, fungi, plants, other nematodes or parasitize a variety of animals and hence may be considered as active members of many food webs. Deadwood is a structural component of forest ecosystems which harbors many niches for diverse biota. As fungi and bacteria are among the most prominent decomposing colonizers of deadwood, we anticipated frequent and diverse nematode populations to co-occur in such ecosystems. However, knowledge about their ability to colonize this habitat is still limited. We applied DNA-based amplicon sequencing (metabarcoding) of the 18S rRNA gene to analyze nematode communities in sapwood and heartwood of decaying logs from 13 different tree species. We identified 247 nematode ASVs (amplicon sequence variants) from 27 families. Most of these identified families represent bacterial and fungal feeders. Their composition strongly depended on tree species identity in both wood compartments. While pH and water content were the only wood properties that contributed to nematodes' distribution, co-occurring fungal and prokaryotic (bacteria and archaea) α- and ß-diversities were significantly related to nematode communities. By exploring thirteen different tree species, which exhibit a broad range of wood characteristics, this study provides first and comprehensive insights into nematode diversity in deadwood of temperate forests and indicates connectivity to other wood-inhabiting organisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA