Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 242: 113938, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926408

RESUMEN

Salinity is one of the most common factors affecting alfalfa (Medicago sativa L.), and NaCl is one of the main factors of salinity stress which can cause heavy losses in agricultural production in the world. The application of exogenous melatonin (MT) plays a major role in numerous plants against various stress environments. The effects of exogenous MT on the NaCl tolerance of alfalfa treated with the control, 100 µmol L-1 MT, 150 mmol L-1 NaCl, or 150 mmol L-1 NaCl+ 100 µmol L-1 MT were investigated. The results showed that MT increased growth parameters, inhibited chlorophyll degradation and promoted photosynthetic gas exchange parameters (photosynthetic rate, conductance to H2O, and transpiration rate) and stomatal opening under NaCl stress. Osmotic regulation substances such as soluble sugar, proline and glycine betaine were the highest in the NaCl treatment and the second in the NaCl+MT treatment. Nitrogen, phosphorus, potassium, calcium and magnesium were reduced and sodium was increased by NaCl, whereas these levels were reversed by the NaCl+MT treatment. MT inhibited cell membrane imperfection, lipid peroxidation and reactive oxygen species (ROS) accumulation caused by NaCl stress. MT up-regulated the gene expression and activity of antioxidant enzymes and increased the content of antioxidant non-enzyme substances to scavenge excessive ROS in NaCl-treated plants. In addition, all indicators interacted with each other to a certain extent and could be grouped according to the relative values. All variables were divided into PC 1 (89.2 %) and PC 2 (4 %). They were clustered into two categories with opposite effects, and most of them were significant variables. Hence, these findings reveal that exogenous MT alleviates the inhibitory effects of NaCl stress on photosynthesis, stomata opening, osmotic adjustment, ion balance and redox homeostasis, enhancing tolerance and growth of alfalfa. Furthermore, it suggests that MT could be implemented to improve the NaCl tolerance of alfalfa.


Asunto(s)
Medicago sativa , Melatonina , Antioxidantes/metabolismo , Medicago sativa/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Cloruro de Sodio/metabolismo , Cloruro de Sodio/toxicidad
2.
Front Microbiol ; 12: 771361, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095791

RESUMEN

Alfalfa (Medicago sativa L.) is one of the most widely cultivated forage crops in the world. China is the second largest producer of alfalfa in terms of the planting area worldwide, with Gansu, Henan, Inner Mongolia, and Shaanxi provinces being the production hubs. Alfalfa viruses have been reported on a small-scale survey in some of these areas, but they have not been well characterized. In the present study, seven viruses were detected in 12 fields of 10 cities/counties of the four abovementioned provinces by high-throughput sequencing and assembly of small RNA. Their incidence, distribution, and genetic diversity were analyzed by enzyme-linked immunosorbent assay, polymerase chain reaction (PCR)/reverse transcription-PCR and clone sequencing. The results showed that alfalfa mosaic virus (AMV), pea streak virus (PeSV), lucerne transient streak virus (LTSV), alfalfa dwarf virus (ADV), Medicago sativa alphapartitivirus 1 (MsAPV1), MsAPV2, and alfalfa leaf curl virus (ALCV) were the main viruses infecting alfalfa in four examined provinces. AMV and MsAPV1 had the highest incidences in all 4 provinces. SDT analysis of the 7 viruses isolated in China revealed a highly conserved among AMV, LTSV, ADV, MsAPV1, MsAPV2, and ALCV, but the sequence was a high variation between China isolates to abroad isolates in PeSV, ADV, and ALCV. To our knowledge, this is the first report of ADV in Inner Mongolia and Gansu, ALCV in Inner Mongolia, MsAPV1 and MsAPV2 in all 4 provinces, and PeSV and LTSV in China. These findings provide a basis for future research on the genetic evolution of alfalfa viruses in China and on strategies to prevent diseases in alfalfa caused by these viruses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA